Эпигенетические механизмы регуляции экспрессии генов. Эпигенетика: невидимый командир генома. Эпигеном и старение

Эпигенетика — сравнительно недавнее направление биологической науки и пока не так широко известно, как генетика. Под ней понимают раздел генетики, который изучает наследуемые изменения активности генов во время развития организма или деления клеток.

Эпигенетические изменения не сопровождаются перестановкой последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК).

В организме существуют различные регуляторные элементы в самом геноме, которые контролируют работу генов, в том числе в зависимости от внутренних и внешних факторов. Долгое время эпигенетику не признавали, т. к. было мало информации о природе эпигенетических сигналов и механизмах их реализации.

Структура генома человека

В 2002 г. в результате многолетних усилий большого числа ученых разных стран закончена расшифровка строения наследственного аппарата человека, который заключен в главной молекуле ДНК. Это одно из выдающихся достижений биологии начала ХХI века.

ДНК, в которой находится вся наследственная информация о данном организме, называется геномом. Гены — это отдельные участки, занимающие очень небольшую часть генома, но при этом составляют его основу. Каждый ген отвечает за передачу в организме человека данных о строении рибонуклеиновой кислоты (РНК) и белка. Структуры, которые передают наследственную информацию, называют кодирующими последовательностями. В результате проекта «Геном» были получены данные, согласно которым геном человека оценивался в более чем 30 000 генов. В настоящее время, в связи с появлением новых результатов масс-спектрометрии, геном предположительно насчитывает около 19 000 генов .

Генетическая информация каждого человека содержится в ядре клетки и расположена в особых структурах, получивших название хромосомы. Каждая соматическая клетка содержит два полных набора (диплоидный) хромосом. В каждом единичном наборе (гаплоидном) присутствует 23 хромосомы — 22 обычные (аутосомы) и по одной половой хромосоме — Х или Y.

Молекулы ДНК, содержащиеся во всех хромосомах каждой клетки человека, представляют собой две полимерные цепи, закрученные в правильную двойную спираль.

Обе цепи удерживают друг друга четырьмя основаниями: аденин (А), цитозин (Ц), гуанин (Г) и тиамин (Т). Причем основание А на одной цепочке может соединиться только с основанием Т на другой цепочке и аналогично основание Г может соединяться с основанием Ц. Это называется принципом спаривания оснований. При других вариантах спаривание нарушает всю целостность ДНК.

ДНК существует в виде тесного комплекса со специализированными белками, и вместе они составляют хроматин.

Гистоны — это нуклеопротеины, основная составляющая хроматина. Им свойственно образование новых веществ путем присоединения двух структурных элементов в комплекс (димер), что является особенностью для последующей эпигенетической модификации и регуляции.

ДНК, хранящая генетическую информацию, при каждом клеточном делении самовоспроизводится (удваивается), т. е. снимает с самой себя точные копии (репликация). Во время клеточного деления связи между двумя цепями двойной спирали ДНК разрушаются и нити спирали разделяются. Затем на каждой из них строится дочерняя цепь ДНК. В результате молекула ДНК удваивается, образуются дочерние клетки.

ДНК служит матрицей, на которой происходит синтез разных РНК (транскрипция). Этот процесс (репликация и транскрипция) осуществляется в ядрах клеток, а начинается он с области гена, называемой промотором, на котором связываются белковые комплексы, копирующие ДНК для формирования матричной РНК (мРНК).

В свою очередь последняя служит не только носителем ДНК-информации, но и переносчиком этой информации для синтеза белковых молекул на рибосомах (процесс трансляции).

В настоящее время известно, что зоны гена человека, кодирующие белки (экзоны), занимают лишь 1,5% генома . Большая часть генома не имеет отношения к генам и инертна в плане передачи информации. Выявленные зоны гена, не кодирующие белки, называются интронами.

Первая копия мРНК, полученная с ДНК, содержит в себе весь набор экзонов и интронов. После этого специализированные белковые комплексы удаляют все последовательности интронов и соединяют друг с другом экзоны. Этот процесс редактирования называется сплайсингом.

Эпигенетика объясняет один из механизмов, с помощью которого клетка способна контролировать синтез производимого ею белка, определяя в первую очередь, сколько копий мРНК можно получить с ДНК.

Итак, геном — это не застывшая часть ДНК, а динамическая структура, хранилище информации, которую нельзя свести к одним генам.

Развитие и функционирование отдельных клеток и организма в целом не запрограммированы автоматически в одном геноме, но зависят от множества различных внутренних и внешних факторов. По мере накопления знаний выясняется, что в самом геноме существуют множественные регуляторные элементы, которые контролируют работу генов. Сейчас это находит подтверждение во множестве экспериментальных исследований на животных .

При делении во время митоза дочерние клетки могут наследовать от родительских не только прямую генетическую информацию в виде новой копии всех генов, но и определенный уровень их активности. Такой тип наследования генетической информации получил название эпигенетического наследования.

Эпигенетические механизмы регуляции генов

Предметом эпигенетики является изучение наследования активности генов, не связанной с изменением первичной структуры входящей в их состав ДНК. Эпигенетические изменения направлены на адаптацию организма к изменяющимся условиям его существования.

Впервые термин «эпигенетика» предложил английский генетик Waddington в 1942 г. Разница между генетическими и эпигенетическими механизмами наследования заключается в стабильности и воспроизводимости эффектов .

Генетические признаки фиксируются неограниченное число, пока в гене не возникает мутация. Эпигенетические модификации обычно отображаются в клетках в пределах жизни одного поколения организма. Когда данные изменения передаются следующим поколениям, то они могут воспроизводиться в 3-4 генерациях, а затем, если стимулирующий фактор пропадает, эти преобразования исчезают.

Молекулярная основа эпигенетики характеризуется модификацией генетического аппарата, т. е. активации и репрессии генов, не затрагивающих первичную последовательность нуклеотидов ДНК.

Эпигенетическая регуляция генов осуществляется на уровне траскрипции (время и характер транскрипции гена), при отборе зрелых мРНК для транспорта их в цитоплазму, при селекции мРНК в цитоплазме для трансляции на рибосомах, дестабилизации определенных типов мРНК в цитоплазме, избирательной активации, инактивации молекул белков после их синтеза.

Совокупность эпигенетических маркеров представляет собой эпигеном. Эпигенетические преобразования могут влиять на фенотип.

Эпигенетика играет важную роль в функционировании здоровых клеток, обеспечивая активацию и репрессию генов, в контроле транспозонов, т. е. участков ДНК, способных перемещаться внутри генома, а также в обмене генетического материала в хромосомах .

Эпигенетические механизмы участвуют в геномном импритинге (отпечаток) — процессе, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступили аллели. Импритинг реализуется через процесс метилирования ДНК в промоторах, в результате чего транскрипция гена блокируется.

Эпигенетические механизмы обеспечивают запуск процессов в хроматине через модификации гистонов и метилирование ДНК. За последние два десятилетия существенно изменились представления о механизмах регуляции транскрипции эукариот. Классическая модель предполагала, что уровень экспрессии определяется транскрипционными факторами, связывающимися с регуляторными областями гена, которые инициируют синтез матричной РНК. Гистонам и негистоновым белкам отводилась роль пассивной упаковочной структуры для обеспечения компактной укладки ДНК в ядре.

В последующих исследованиях была показана роль гистонов в регуляции трансляции. Был обнаружен так называемый гистоновый код, т. е. модификация гистонов, неодинаковая в разных районах генома. Видоизмененные гистоновые коды могут приводить к активизации и репрессии генов .

Модификациям подвергаются различные части структуры генома. К концевым остаткам могут присоединяться метильные, ацетильные, фосфатные группы и более крупные белковые молекулы.

Все модификации являются обратимыми и для каждой существуют ферменты, которые ее устанавливают или удаляют.

Метилирование ДНК

У млекопитающих метилирование ДНК (эпигенетический механизм) было изучено раньше других. Показано, что он коррелирует с репрессией генов. Экспериментальные данные показывают, что метилирование ДНК является защитным механизмом, подавляющим значительную часть генома чужеродной природы (вирусы и др.).

Метилирование ДНК в клетке контролирует все генетические процессы: репликацию, репарацию, рекомбинацию, транскрипцию, инактивацию Х-хромосомы. Метильные группы нарушают ДНК-белковое взаимодействие, препятствуя связыванию транскрипционных факторов. Метилирование ДНК влияет на структуру хроматина, блокирует транскрипционные репрессоры .

Действительно, повышение уровня метилирования ДНК коррелирует с относительным увеличением содержания некодирующей и повторяющейся ДНК в геномах высших эукариот. Экспериментальные данные показывают, что это происходит потому, что метилирование ДНК служит главным образом как защитный механизм, чтобы подавлять значительную часть генома чужеродного происхождения (реплицированные перемещающиеся элементы, вирусные последовательности, другие повторяющиеся последовательности).

Профиль метилирования — активирование или угнетение — меняется в зависимости от средовых факторов. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования здорового организма, чтобы подавлять значительную часть генома чужеродного происхождения, т. е. реплицированные перемещающиеся элементы, вирусные и другие повторяющиеся последовательности.

Метилирование ДНК происходит путем обратимой химической реакции азотистого основания — цитозина, в результате чего метильная группа СН3 присоединяется к углероду с образованием метилцитозина. Этот процесс катализируется ферментами ДНК-метилтрансферазами. Для метилирования цитозина необходим гуанин, в результате образуется два нуклеотида, разделенные фосфатом (СрG).

Скопление неактивных последовательностей СрG называется островками СрG. Последние представлены в геноме неравномерно . Большинство из них выявляются в промоторах генов. Метилирование ДНК происходит в промоторах генов, в транскрибируемых участках, а также в межгенных пространствах.

Гиперметилированные островки вызывают инактивацию гена, что нарушает взаимодействие регуляторных белков с промоторами.

Метилирование ДНК оказывает огромное влияние на экспрессию генов и, в конечном счете, на функцию клеток, тканей и организма в целом. Установлена прямая зависимость между высоким уровнем метилирования ДНК и количеством репрессированных генов.

Удаление метильных групп из ДНК в результате отсутствия метилазной активности (пассивное деметилирование) реализуется после репликации ДНК. При активном деметилировании участвует ферментативная система, превращающая 5-метилцитозин в цитозин независимо от репликации. Профиль метилирования меняется в зависимости от средовых факторов, в которых находится клетка.

Утрата способности поддерживать метилирование ДНК может приводить к иммунодефициту, злокачественным опухолям и другим заболеваниям .

Долгое время механизм и ферменты, вовлеченные в процесс активного деметилирования ДНК, оставались неизвестными.

Ацетилирование гистонов

Существует большое число посттрансляционных модификаций гистонов, которые формируют хроматин. В 1960-е годы Винсент Олфри идентифицировал ацетилирование и фосфорилирование гистонов из многих эукариот .

Ферменты ацетилирования и деацетилирования (ацетилтрансферазы) гистонов играют роль в ходе транскрипции. Эти ферменты катализируют ацетилирование локальных гистонов. Деацетилазы гистонов репрессируют транскрипцию.

Эффект ацетилирования это ослабление связи между ДНК и гистонами из-за изменения заряда, в результате чего хроматин становится доступным для факторов транскрипции.

Ацетилирование представляет собой присоединение химической ацетил-группы (аминокислоты лизин) на свободный участок гистона. Как и метилирование ДНК, ацетилирование лизина представляет собой эпигенетический механизм для изменения экспрессии генов, не влияющих на исходную последовательность генов. Шаблон, по которому происходят модификации ядерных белков, стали называть гистоновым кодом.

Гистоновые модификации принципиально отличаются от метилирования ДНК. Метилирование ДНК представляет собой очень стабильное эпигенетическое вмешательство, которое чаще закрепляется в большинстве случаев.

Подавляющее большинство гистоновых модификаций более вариативно. Они влияют на регуляцию экспрессии генов, поддержание структуры хроматина, дифференциацию клеток, канцерогенез, развитие генетических заболеваний, старение, репарацию ДНК, репликацию, трансляцию. Если гистоновые модификации идут на пользу клетки, то они могут продолжаться довольно долго .

Одним из механизмов взаимодействия между цитоплазмой и ядром является фосфорилирование и/или дефосфорилирование транскрипционных факторов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. Это осуществляется с помощью протеинкиназ.

Под контролем фосфорилируемых транскрипционных факторов находятся гены, в том числе гены, регулирующие пролиферацию клеток. При подобных модификациях в молекулах хромосомных белков происходят структурные изменения, которые приводят к функциональным изменениям хроматина.

Помимо описанных выше посттрансляционных модификаций гистонов имеются более крупные белки, такие как убиквитин, SUMO и др., которые могут присоединяться с помощью ковалентной связи к боковым аминогруппам белка-мишени, оказывая воздействие на их активность.

Эпигенетические изменения могут передаваться по наследству (трансгенеративная эпигенетическая наследственность). Однако в отличие от генетической информации, эпигенетические изменения могут воспроизводиться в 3-4 поколениях, а при отсутствии фактора, стимулирующего эти изменения, исчезают. Передача эпигенетической информации происходит в процессе мейоза (деления ядра клетки с уменьшением числа хромосом вдвое) или митоза (деления клеток).

Модификации гистонов играют фундаментальную роль в нормальных процессах и при заболеваниях.

Регуляторные РНК

Молекулы РНК выполняют в клетке множество функций. Одной из них является регуляция экспрессии генов. За эту функцию отвечают регуляторные РНК, к которым относятся антисмысловые РНК (aRNA), микроРНК (miRNA) и малые интерферирующие РНК (siRNA)

Механизм действия разных регуляторных РНК схож и заключается в подавлении экспрессии генов, реализующейся путем комплементарного присоединения регуляторной РНК к мРНК, с образованием двухцепочечной молекулы (дцРНК). Само по себе образование дцРНК приводит к нарушению связывания мРНК с рибосомой или другими регуляторными факторами, подавляя трансляцию. Также после образования дуплекса возможно проявление феномена РНК-интерференции — фермент Dicer, обнаружив в клетке двухцепочечную РНК, «разрезает» ее на фрагменты. Одна из цепей такого фрагмента (siRNA) связывается комплексом белков RISC (RNA-induced silencing complex) .

В результате деятельности RISC одноцепочечный фрагмент РНК соединяется с комплементарной последовательностью молекулы мРНК и вызывает разрезание мРНК белком семейства Argonaute. Данные события приводят к подавлению экспрессии соответствующего гена.

Физиологические функции регуляторных РНК разно-образны — они выступают основными небелковыми регуляторами онтогенеза, дополняют «классическую» схему регуляции генов.

Геномный импритинг

Человек обладает двумя копиями каждого гена, один из которых унаследован от матери, другой от отца. Обе копии каждого гена имеют возможность быть активной в любой клетке. Геномный импритинг это эпигенетически избирательная экспрессия только одного из аллельных генов, наследуемых от родителей. Геномный импритинг затрагивает и мужское и женское потомство. Так, импритингованный ген, активный на материнской хромосоме, будет активным на материнской хромосоме и «молчащим» на отцовской у всех детей мужского и женского пола. Гены, подверженные геномному импритингу, в основном кодируют факторы, регулирующие эмбриональный и неонатальный рост .

Импритинг представляет сложную систему, которая может ломаться. Импритинг наблюдается у многих больных с хромосомными делециями (утраты части хромосом). Известны заболевания, которые у человека возникают в связи с нарушением функционирования механизма импритинга.

Прионы

В последние десятилетие внимание привлечено к прионам, белкам, которые могут вызывать наследуемые фенотипические изменения, не изменяя нуклеотидной последовательности ДНК. У млекопитающих прионный белок расположен на поверхности клеток. При определенных условиях нормальная форма прионов может изменяться, что модулирует активность этого белка.

Викнер выразил уверенность в том, что этот класс белков является одним из многих, которые составляют новую группу эпигенетических механизмов, требующих дальнейшего изучения. Он может находиться в нормальном состоянии, а в измененном состоянии прионные белки могут распространяться, т. е. стать инфекционными .

Первоначально прионы были открыты как инфекционные агенты нового типа, но сейчас считают, что они представляют собой феномен общебиологический и являются носителями информации нового типа, хранимой в конформации белка. Феномен прионов лежит в основе эпигенетической наследственности и регуляции экспрессии генов на посттрансляционном уровне.

Эпигенетика в практической медицине

Эпигенетические модификации контролируют все стадии развития и функциональную активность клеток. Нарушение механизмов эпигенетической регуляции напрямую или косвенно связано с множеством заболеваний.

К заболеваниям с эпигенетической этиологией относят болезни импринтинга, которые в свою очередь делятся на генные и хромосомные, всего в настоящее время насчитывают 24 нозологии.

При болезнях генного импринтинга наблюдается моноаллельная экспрессия в локусах хромосом одного из родителей. Причиной являются точечные мутации в генах, дифференцированно экспрессирующихся в зависимости от материнского и отцовского происхождения и приводящих к специфическому метилированию цитозиновых оснований в молекуле ДНК. К ним относят: синдром Прадера-Вилли (делеция в отцовской хромосоме 15) — проявляется черепно-лицевым дисморфизмом, низким ростом, ожирением, мышечной гипотонией, гипогонадизмом, гипопигментацией и задержкой умственного развития; синдром Ангельмана (делеция критического района, находящегося в 15-й материнской хромосоме), основными признаками которого являются микробрахицефалия, увеличенная нижняя челюсть, выступающий язык, макростомия, редкие зубы, гипопигментация; синдром Беквитта-Видемана (нарушение метилирования в коротком плече 11-й хромосомы), проявляющийся классической триадой, включающей макросомию, омфалоцеле макроглоссию и др. .

К числу важнейших факторов, влияющих на эпигеном, относятся питание, физическая активность, токсины, вирусы, ионизирующая радиация и др. Особенно чувствительным периодом к изменению эпигенома является внутриутробный период (особенно охватывающий два месяца после зачатия) и первые три месяца после рождения. В период раннего эмбриогенеза геном удаляет большую часть эпигенетических модификаций, полученных от предыдущих поколений. Но процесс репрограммирования продолжается в течение всей жизни .

К заболеваниям, где нарушение генной регуляции является частью патогенеза, можно отнести некоторые виды опухолей, сахарный диабет, ожирение, бронхиальную астму, различные дегенеративные и другие болезни .

Эпигоном при раке характеризуется глобальными изменениями в метилировании ДНК, модификации гистонов, а также изменением профиля экспрессии хроматин-модифицирующих ферментов.

Опухолевые процессы характеризуются инактивацией посредством гиперметилирования ключевых генов-супрессоров и посредством гипометилирования активацией целого ряда онкогенов, факторов роста (IGF2, TGF) и мобильных повторяющихся элементов, расположенных в районах гетерохроматина .

Так, в 19% случаев гипернефроидные опухоли почки ДНК островков СрG была гиперметилированной, а при раке груди и немелкоклеточной карциноме легких выявлена взаимосвязь между уровнями гистонового ацетилирования и экспрессией супрессора новообразований — чем ниже уровни ацетилирования, тем слабее экспрессия гена.

В настоящее время уже разработаны и внедрены в практику противоопухолевые лекарственные препараты, основанные на подавлении активности ДНК-метилтрансфераз, что приводит к снижению метилирования ДНК, активации генов-супрессоров опухолевого роста и замедлению пролиферации опухолевых клеток. Так, для лечения миелодиспластического синдрома в комплексной терапии применяют препараты децитабин (Decitabine) и азацитидин (Azacitidine) . С 2015 г. для лечения множественной миеломы в сочетании с классической химиотерапией применяют панобиностат (Panibinostat), являющийся ингибитором гистоновой деацитилазы . Данные препараты по данным клинических исследований оказывают выраженный положительный эффект на уровень выживаемости и качество жизни пациентов.

Изменения экспрессии тех или иных генов могут происходить и в результате действия на клетку факторов внешней среды. В развитии сахарного диабета 2-го типа и ожирения играет роль так называемая «гипотеза экономного фенотипа», согласно которой недостаток питательных веществ в процессе эмбрионального развития приводит к развитию патологического фенотипа . На моделях животных был выявлен участок ДНК (локус Pdx1), в котором под влиянием недостаточности питания снижался уровень ацетилирования гистонов, при этом наблюдались замедление деления и нарушения дифференцировки B-клеток островков Лангерганса и развития состояния, схожего с сахарным диабетом 2-го типа .

Активно развиваются и диагностические возможности эпигенетики. Появляются новые технологии, способные анализировать эпигенетические изменения (уровень метилирования ДНК, экспрессию микроРНК, посттрансляционные модификации гистонов и др.), такие как иммунопреципитация хроматина (CHIP), проточная цитометрия и лазерное сканирование, что дает основания полагать, что в ближайшее время будут выявлены биомаркеры для изучения нейродегенеративных заболеваний, редких, многофакторных болезней и злокачественных новообразований и внедрены в качестве методов лабораторной диагностики .

Итак, в настоящее время эпигенетика бурно развивается. С ней связывают прогресс в биологии и медицине.

Литература

  1. Ezkurdia I., Juan D., Rodriguez J. M. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes // Human Molecular Genetics. 2014, 23 (22): 5866-5878.
  2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome // Nature. 2001, Feb. 409 (6822): 860-921.
  3. Xuan D., Han Q., Tu Q. et al. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages // Journal of Cellular Physiology. 2016, May; 231 (5): 1090-1096.
  4. Waddington C. H. The Epigenotpye // Endeavour. 1942; 18-20.
  5. Бочков Н. П. Клиническая генетика. М.: Гэотар.Мед, 2001.
  6. Jenuwein T., Allis C. D. Translating the Histone Code // Science. 2001, Aug 10; 293 (5532): 1074-1080.
  7. Коваленко Т. Ф. Метилирование генома млекопитающих // Молекулярная медицина. 2010. № 6. С. 21-29.
  8. Элис Д., Дженювейн Т., Рейнберг Д. Эпигенетика. М.: Техносфера, 2010.
  9. Taylor P. D., Poston L. Development programming of obesity in mammals // Experemental Physiology. 2006. № 92. P. 287-298.
  10. Льюин Б. Гены. М.: БИНОМ, 2012.
  11. Plasschaert R. N., Bartolomei M. S. Genomic imprinting in development, growth, behavior and stem cells // Development. 2014, May; 141 (9): 1805-1813.
  12. Wickner R. B., Edskes H. K., Ross E. D. et al. Prion genetics: new rules for a new kind of gene // Annu Rev Genet. 2004; 38: 681-707.
  13. Мутовин Г. Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учеб. пособие. 3-е изд., перераб. и доп. 2010.
  14. Романцова Т. И. Эпидемия ожирения: очевидные и вероятные причины // Ожирение и метаболизм. 2011, № 1, с. 1-15.
  15. Bégin P., Nadeau K. C. Epigenetic regulation of asthma and allergic disease // Allergy Asthma Clin Immunol. 2014, May 28; 10 (1): 27.
  16. Martínez J. A., Milagro F. I., Claycombe K. J., Schalinske K. L. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes // Advances in Nutrition. 2014, Jan 1; 5 (1): 71-81.
  17. Dawson M. A., Kouzarides T. Cancer epigenetics: from mechanism to therapy // Cell. 2012, Jul 6; 150 (1): 12-27.
  18. Kaminskas E., Farrell A., Abraham S., Baird A. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes // Clin Cancer Res. 2005, May 15; 11 (10): 3604-3608.
  19. Laubach J. P., Moreau P., San-Miguel J..F, Richardson P. G. Panobinostat for the Treatment of Multiple Myeloma // Clin Cancer Res. 2015, Nov 1; 21 (21): 4767-4773.
  20. Bramswig N. C., Kaestner K. H. Epigenetics and diabetes treatment: an unrealized promise? // Trends Endocrinol Metab. 2012, Jun; 23 (6): 286-291.
  21. Sandovici I., Hammerle C. M., Ozanne S. E., Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes // Cell Mol Life Sci. 2013, May; 70 (9): 1575-1595.
  22. Szekvolgyi L., Imre L., Minh D. X. et al. Flow cytometric and laser scanning microscopic approaches in epigenetics research // Methods Mol Biol. 2009; 567: 99-111.

В. В. Смирнов 1 , доктор медицинских наук, профессор
Г. Е. Леонов

ФГБОУ ВО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваша мама и бабушка. Ваши клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. Во многом благодаря клеточной памяти мы не похожи на шимпанзе, хотя имеем с ним примерно одинаковый состав генома. И эту удивительную особенность наших клеток помогла понять наука эпигенетика.

Эпигенетика - довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.

Управление мутацией

Развитие эпигенетики как отдельного направления молекулярной биологии началось в 1940-х. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта», объясняющую процесс формирования организма. Долгое время считалось, что эпигенетические превращения характерны лишь для начального этапа развития организма и не наблюдаются во взрослом возрасте. Однако в последние годы была получена целая серия экспериментальных доказательств, которые произвели в биологии и генетике эффект разорвавшейся бомбы.

Переворот в генетическом мировоззрении произошел в самом конце прошлого века. Сразу в нескольких лабораториях был получен ряд экспериментальных данных, заставивших генетиков сильно призадуматься. Так, в 1998 году швейцарские исследователи под руководством Ренато Паро из Университета Базеля проводили эксперименты с мухами дрозофилами, у которых вследствие мутаций был желтый цвет глаз. Обнаружилось, что под воздействием повышения температуры у мутантных дрозофил рождалось потомство не с желтыми, а с красными (как в норме) глазами. У них активировался один хромосомный элемент, который и менял цвет глаз.

К удивлению исследователей, красный цвет глаз сохранялся у потомков этих мух еще в течение четырех поколений, хотя они уже не подвергались тепловому воздействию. То есть произошло наследование приобретенных признаков. Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие сам геном, могут закрепляться и передаваться следующим поколениям.

Но, может, такое бывает только у дрозофил? Не только. Позже выяснилось, что у людей влияние эпигенетических механизмов тоже играет очень большую роль. Например, была выявлена закономерность, что предрасположенность взрослых людей к диабету 2-го типа может во многом зависеть от месяца их рождения. И это при том, что между влиянием определенных факторов, связанных со временем года, и возникновением самого заболевания проходит 50−60 лет. Это наглядный пример так называемого эпигенетического программирования.

Что же может связывать предрасположенность к диабету и дату рождения? Новозеландским ученым Питеру Глюкману и Марку Хансону удалось сформулировать логическое объяснение этого парадокса. Они предложили «гипотезу несоответствия» (mismatch hypothesis), согласно которой в развивающемся организме может происходить «прогностическая» адаптация к условиям обитания, ожидающимся после рождения. Если прогноз подтверждается, это увеличивает шансы организма на выживание в мире, где ему предстоит жить. Если нет - адаптация становится дезадаптацией, то есть болезнью.

К примеру, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день». Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек после рождения, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни.

Опыты, проведенные в 2003 году американскими учеными из Дюкского университета Рэнди Джиртлом и Робертом Уотерлендом, уже стали хрестоматийными. Несколькими годами ранее Джиртлу удалось встроить искусственный ген обычным мышам, из-за чего те рождались желтыми, толстыми и болезненными. Создав таких мышей, Джиртл с коллегами решили проверить: нельзя ли, не удаляя дефектный ген, сделать их нормальными? Оказалось, что можно: они добавили в корм беременным мышам агути (так стали называть желтых мышиных «монстров») фолиевую кислоту, витамин В 12 , холин и метионин, и в результате этого появилось нормальное потомство. Пищевые факторы оказались способными нейтрализовать мутации в генах. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, сами рождали нормальных мышей, хотя питание у них было уже обычное.

Можно уверенно сказать, что период беременности и первых месяцев жизни наиболее важен в жизни всех млекопитающих, в том числе и человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни».

Судьба по наследству

Наиболее изученный механизм эпигенетической регуляции активности генов - процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Метилирование может влиять на активность генов несколькими способами. В частности, метильные группы могут физически препятствовать контакту фактора транскрипции (белка, контролирующего процесс синтеза информационной РНК на матрице ДНК) со специфичными участками ДНК. С другой стороны, они работают в связке с метилцитозин-связывающими белками, участвуя в процессе ремоделирования хроматина - вещества, из которого состоят хромосомы, хранилища наследственной информации.

Метилирование ДНК
Метильные группы присоединяются к цитозиновым основаниям, не разрушая и не изменяя ДНК, но влияя на активность соответствующих генов. Существует и обратный процесс - деметилирование, при котором метильные группы удаляются и первоначальная активность генов восстанавливается" border="0">

Метилирование участвует во многих процессах, связанных с развитием и формированием всех органов и систем у человека. Один из них - инактивация X-хромосом у эмбриона. Как известно, самки млекопитающих обладают двумя копиями половых хромосом, обозначаемых как X-хромосома, а самцы довольствуются одной X и одной Y-хромосомой, которая значительно меньше по размеру и по количеству генетической информации. Чтобы уравнять самцов и самок в количестве генных производимых продуктов (РНК и белков), большинство генов на одной из X-хромосом у самок выключается.

Кульминация этого процесса происходит на стадии бластоцисты, когда зародыш состоит из 50−100 клеток. В каждой клетке хромосома для инактивации (отцовская или материнская) выбирается случайным образом и остается неактивной во всех последующих генерациях этой клетки. С этим процессом «перемешивания» отцовских и материнских хромосом связан тот факт, что женщины намного реже страдают заболеваниями, связанными с X-хромосомой.

Метилирование играет важную роль в клеточной дифференцировке - процессе, благодаря которому «универсальные» эмбриональные клетки развиваются в специализированные клетки тканей и органов. Мышечные волокна, костная ткань, нервные клетки - все они появляются благодаря активности строго определенной части генома. Также известно, что метилирование играет ведущую роль в подавлении большинства разновидностей онкогенов, а также некоторых вирусов.

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью и другими внешними факторами.

Данные, хорошо подтверждающие этот вывод, были получены в начале этого века американскими и европейскими исследователями. Ученые обследовали пожилых голландцев, родившихся сразу после войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944−1945 годов был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год или два позднее (или ранее).

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, было заметно понижено метилирование гена инсулиноподобного фактора роста (ИФР), из-за чего количество ИФР в крови повышалось. А этот фактор, как хорошо известно ученым, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче.

Позднее американский ученый Ламбер Люмэ обнаружил, что и в следующем поколении дети, родившиеся в семьях этих голландцев, также появлялись на свет с ненормально малым весом и чаще других болели всеми возрастными болезнями, хотя их родители жили вполне благополучно и хорошо питались. Гены запомнили информацию о голодном периоде беременности бабушек и передали ее даже через поколение, внукам.

Многоликая эпигенетика

Эпигенетические процессы реализуются на нескольких уровнях. Метилирование действует на уровне отдельных нуклеотидов. Следующий уровень - это модификация гистонов, белков, участвующих в упаковке нитей ДНК. От этой упаковки также зависят процессы транскрипции и репликации ДНК. Отдельная научная ветвь - РНК-эпигенетика - изучает эпигенетические процессы, связанные с РНК, в том числе метилирование информационной РНК.

Гены не приговор

Наряду со стрессом и недоеданием на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд.

Самый яркий и негативный пример - это, пожалуй, бисфенол-А, уже много лет применяющийся в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится в некоторых видах пластиковой тары - бутылок для воды и напитков, пищевых контейнеров.

Отрицательное воздействие бисфенола-А на организм заключается в способности «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК. Биологи из Гарвардской медицинской школы обнаружили способность бисфенола-А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Их коллеги из Колумбийского университета обнаружили способность бисфенола-А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам, женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером, покладистыми и спокойными.

К счастью, существуют продукты, оказывающие положительное влияние на эпигеном. Например, регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нем содержится определенное вещество (эпигаллокатехин-3-галлат), которое может активизировать гены-супрессоры (подавители) опухолевого роста, деметилируя их ДНК. В последние годы популярен модулятор эпигенетических процессов генистеин, содержащийся в продуктах из сои. Многие исследователи связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.


Секвенирование ДНК генома человека и геномов многих модельных организмов вызвало в последние несколько лет значительное возбуждение в биомедицинском сообществе и среди обычной публики. Эти генетические "синьки", демонстрирующие общепринятые правила менделевской наследственности, оказываются теперь легко доступными для тщательного анализа, открывая дверь для более глубокого понимания биологии человека и его болезней. Эти знания порождают также новые надежды на новые лечебные стратегии. Тем не менее, многие фундаментальные вопросы остаются без ответа. Например, как осуществляется нормальное развитие, при том что каждая клетка обладает одной и той же генетической информацией и все же следует своим особым путем развития с высокой временной и пространственной точностью? Каким образом клетка решает, когда ей делиться и дифференцироваться, а когда сохранять неизменной клеточную идентичность, реагируя и проявляя себя согласно своей нормальной программе развития? Ошибки, случающиеся в вышеупомянутых процессах, могут вести к возникновению таких болезненных состояний, как рак. Закодированы ли эти ошибки в ошибочных "синьках", которые мы унаследовали от одного или обоих родителей, или же имеются какие-то другие слои регуляторной информации, которые не были правильно считаны и декодированы?

У человека генетическая информация (ДНК) организована в 23 пары хромосом, состоящих из примерно 25ООО генов. Эти хромосомы можно сравнить с библиотеками, содержащими разные наборы книг, которые в совокупности обеспечивают инструкции для развития целого человеческого организма. Нуклеотидная последовательность ДНК нашего генома состоит примерно из (3 х на 10 в степени 9) оснований, сокращенно обозначаемых в этой последовательности четырьмя буквами A, С, G и Т, которые образуют определенные слова (гены), предложения, главы и книги. Однако чем же диктуется, когда именно и в каком порядке эти разные книги нужно читать, остается далеко не ясным. Ответ на этот экстраординарный вызов заключается, вероятно, в том, чтобы выяснить, каким образом клеточные события скоординированы в процессе нормального и ненормального развития.

Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована - примерно в 10ООО раз, - чтобы поместиться в клеточном ядре - том компартменте клетки, в котором хранится наш генетический материал. Накручивание ДНК на "шпульки" из белков, так называемых гистоновых белков , обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок:ДНК и который известен как хроматин . Однако в процессе упаковки ДНК для лучшего соответствия ограниченному пространству задача усложняется - во многом так же, как при расстановке слишком большого числа книг на библиотечных полках: становится все труднее и труднее найти и прочесть книгу по выбору, и, таким образом, становится необходимой система индексирования.

Такое индексирование обеспечивается хроматином как платформой для организации генома. Хроматин не однороден по своей структуре; он выступает в различных формах упаковки - от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин). В основной полимер хроматина могут вводиться изменения путем включения необычных гистоновых белков (известных как варианты гистонов), измененных структур хроматина (известных как ремоделинг хроматина) и добавления химических "флажков", меток к самим гистоновым белкам (известного как ковалентные модификации). Более того, добавление метальной группы непосредственно к цитозиновому основанию (С) в матрице ДНК (известное как метилирование ДНК) может создавать сайты для присоединения белков, чтобы изменить состояние хроматина или повлиять на ковалентную модификацию резидентных гистонов.

Полученные в последнее время данные позволяют предполагать, что некодирующие РНК могут "направлять" переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.

В совокупности эти регуляторные возможности наделяют хроматин неким организующим геномы началом, которое известно как "эпигенетика". В некоторых случаях паттерны эпигенетического индексирования оказываются наследующимися в ходе клеточных делений, обеспечивая тем самым клеточную "память", которая может расширять потенциал наследуемой информации, заключенный в генетическом (ДНК) коде. Таким образом, в узком смысле слова эпигенетику можно определять как изменения в транскрипции генов, обусловленные модуляциями хроматина, которые не являются результатом изменений в нуклеотидной последовательности ДНК.

В этом обзоре представлены основные концепции, связанные с хроматином и эпигенетикой, и обсуждения, каким образом эпигенетический контроль может дать нам ключ для решения некоторых давнишних тайн - таких как клеточная идентичность, опухолевый рост, пластичность стволовых клеток, регенерация и старение. По мере того, как читатели будут "продираться" через последующие главы, мы советуем им обратить внимание на широкий спектр экспериментальных моделей, которые, по- видимому, имеют эпигенетическую (неДНКовую) основу. Выраженное в механистических терминах понимание того, как функционирует эпигенетика, будет, вероятно, иметь важные и далеко идущие последствия для биологии и болезней человека в эту "постгеномную" эру.

Эпигенетика – направление генетики, сравнительно недавно оформившееся в самостоятельную область исследований. Но уже сегодня этамолодая динамичная наука предлагает революционный взгляд на молекулярные механизмы развития живых систем .

Одна из наиболее дерзких и вдохновляющих эпигенетических гипотез о том, что активность многих генов подвержена влиянию извне, сейчас находит подтверждение во множестве экспериментов на модельных животных. Исследователи осторожно комментируют их результаты, но не исключают, что и Homo sapiens не в полной мере зависит от наследственности, а значит может на нее целенаправленно воздействовать.

В перспективе, если ученые окажутся правы и им удастся подобрать ключи к механизмам управления генами, человеку станут подвластны физические процессы, происходящие в организме. В их числе вполне может оказаться и старение.

На рис. механизм РНК- интерференции.

Молекулы дцРНК могут представлять собой РНК-шпильку или две спаренные комплементарные друг другу цепи РНК.
Длинные молекулы дцРНК нарезаются (процессируются) в клетке на короткие ферментом Dicer : один из его доменов специфически связывает конец молекулы дцРНК (отмечен звездочкой), при этом другой — производит разрывы (отмечены белыми стрелками) в обеих цепях дцРНК.

В результате образуется двунитевая РНК длиной 20-25 нуклеотидов (siРНК), а Dicer переходит к следующему циклу разрезания дцРНК, связываясь с ее новообразованным концом.


Эти siРНК могут включаться в состав комплекса, содержащего белок Argonaute (AGO) . Одна из цепей siРНК в комплексе с белком AGO находит в клетке комплементарные ей молекулы матричной РНК (мРНК). AGO разрезает молекулы мРНК-мишени, в результате чего мРНК деградирует, или останавливает трансляцию мРНК на рибосоме. Короткие РНК могут также подавлять транскрипцию (синтез РНК) гомологичного им по нуклеотидной последовательности гена в ядре.
(рисунок, схема и комментарий / журнал «Природа» №1, 2007 г.)

Возможны и другие, пока не известные, механизмы.
Разница между эпигенетическими и генетическими механизмами наследования в их стабильности, воспроизводимости эффектов. Генетически обусловленные признаки могут воспроизводиться неограниченно долго, пока в соответствующем гене не возникает определенное изменение (мутация).
Индуцированные определенными стимулами эпигенетические изменения обычно воспроизводятся в ряду клеточных поколений в пределах жизни одного организма. Когда они передаются в следующие генерации, то могут воспроизводиться не более 3-4 поколений, а потом, если индуцировавший их стимул исчезает, постепенно сходят на нет.

А как это выглядит на молекулярном уровне? Эпигенетические маркеры , как принято называть эти химические комплексы, находятся не в нуклеотидах, образующих структурную последовательность молекулы ДНК, а на них и непосредственно улавливают определенные сигналы?

Совершенно верно. Эпигенетические маркеры действительно находятся не В нуклеотидах а НА них (метилирование) либо ВНЕ их (ацетилирование гистонов хроматина, микроРНК).
То, что происходит при передаче этих маркеров в следующие поколения, лучше всего объяснить, используя в качестве аналогии новогоднюю елку. Переходящие из поколения в поколение «игрушки» (эпигенетические маркеры) полностью снимаются с нее в процессе формирования бластоциста (8-клеточного зародыша), а потом, в процессе имплантации «надеваются» на те же места, где находились раньше. Это было известно уже давно. А вот то, что стало известно недавно, и что полностью перевернуло наши представления в биологии, имеет отношение к эпигенетическим модификациям, приобретенным на протяжении жизни данного организма.

Например, если у организма под влиянием определенного воздействия (теплового шока, голодания и т.д.), происходит устойчивая индукция эпигенетических изменений («покупка новой игрушки»). Как предполагалось раньше, подобные эпигенетические маркеры бесследно стираются при оплодотворении и образовании зародыша и, таким образом, не передаются потомкам. Оказалось, что это не так. В большом количестве работ последних лет эпигенетические изменения, индуцированные средовыми стрессами у представителей одного поколения, обнаруживались у представителей 3-4 последующих поколений. Это свидетельствует о возможности наследования приобретенных признаков, что до последнего времени считалось абсолютно невозможным.

Каковы важнейшие факторы, вызывающие эпигенетические изменения?

Это все факторы, действующие на протяжении чувствительных (сенситивных) этапов развития. У человека это весь период внутриутробного развития и первые три месяца после рождения. К важнейшим можно отнести питание, вирусные инфекции, курение матери во время беременности, недостаточная наработка витамина D (при инсоляции), материнский стресс.
То есть, они увеличивают адаптацию организма к изменяющимся условиям. А какие «мессенджеры» существуют между факторами окружающей среды и эпигенетическими процессами – пока никому не известно.

Но, кроме того, есть данные, говорящие о том, что наиболее «сенситивный» период, во время которого возможны основные эпигенетические модификации – периконцептуальный (первые два месяца после зачатия). Возможно, действенными могут оказаться попытки направленного вмешательства в эпигенетические процессы даже до зачатия, то есть на половые клетки еще до образования зиготы. Однако эпигеном остается достаточно пластичным и после окончания этапа эмбрионального развития, некоторые исследователи пытаются его корректировать и у взрослых людей.

Например, Мин Джу Фан (Ming Zhu Fang ) и ее коллеги из Университета Рутгерса в Нью-Джерси (США) обнаружили, что у взрослых людей при помощи определенного компонента зеленого чая (антиоксидант — эпигаллокатехингаллат (EGCG)) можно за счет деметилирования ДНК активизировать гены-супрессоры (подавители) опухолевого роста.

Сейчас в США и в Германии в стадии разработки уже находятся около десятка препаратов, в основу создания которых легли результаты недавних исследований эпигенетиков в диагностике раковых заболеваний.
А какие вопросы в эпигенетике сейчас являются ключевыми? Как их решение может продвинуть изучение механизмов (процесса) старения?

Я считаю, что процесс старения по своей сути является эпигенетическим (« как этап онтогенеза»). Исследования в этой области начались только в последние годы, но, если они увенчаются успехом, возможно, человечество получит новое мощное средство для борьбы с болезнями и продления жизни.
Ключевыми сейчас являются вопросы эпигенетической природы заболеваний (например, рака) и разработка новых подходов к их предупреждению и лечению.
Если удастся изучить молекулярные эпигенетические механизмы возрастных заболеваний, можно будет успешно противодействовать их развитию.

Ведь, например, рабочая пчела живет 6 недель, а пчеломатка – 6 лет.
При полной генетической идентичности они различаются только тем, что будущую пчеломатку во время развития кормят маточным молочком на несколько дней больше, чем обычную рабочую пчелу.

В результате у представителей этих пчелиных каст формируются несколько отличные эпигенотипы. И, несмотря на внешнее и биохимическое подобие, длительность их жизни различается в 50 раз!

В процессе исследований в 60-е годы было показано, что уменьшается с возрастом. Но удалось ли ученым продвинуться в ответе на вопрос: почему это происходит?

Есть масса работ, свидетельствующих о том, что особенности и темп старения зависят от условий раннего онтогенеза. Большинство связывает это именно с корригировкой эпигенетических процессов.

Метилирование ДНК действительно уменьшается с возрастом, почему это происходит – пока не известно. Одна из версий – что это следствие адаптации, попытка организма приспособиться как к внешним стрессам, так и ко внутреннему «сверхстрессу» — старению.

Возможно, что «включающиеся» при возрастном деметилировании ДНК – дополнительный адаптивный ресурс, одно из проявлений процесса витаукта (как его назвал выдающийся геронтолог Владимир Вениаминович Фролькис) — физиологического процесса, противодействующего старению.


Чтобы произвести изменения на генном уровне, нужно выявить и заменить мутировавшую «букву» ДНК, может быть участок генов. Пока наиболее перспективный путь для осуществления таких операций — биотехнологический. Но до сих пор это экспериментальное направление и особых прорывов в нем пока нет. Метилирование более пластичный процесс, его проще изменять — в том числе, с помощью фармакологических препаратов. Возможно ли научиться избирательно контролировать ? Что еще для этого еще предстоит сделать?

Метилирование – вряд ли. Оно неспецифично, действует на все «оптом». Можно научить обезьяну лупить по клавишам пианино, и она будет извлекать из него громкие звуки, но «Лунную сонату» исполнит вряд ли. Хотя есть примеры, когда при помощи метилирования удавалось изменить фенотип организма. Наиболее известен пример с мышами – носителями мутантного гена агути (я его уже приводил). Реверсия к нормальному цвету шерсти происходила у этих мышей, потому, что «дефектный» ген был у них «выключен» за счет метилирования.

Но избирательно влиять на экспрессию генов можно, и для этого прекрасно подходят интерферирующие РНК, которые действуют высокоспецифично, только на «собственные» . Такие работы уже проводятся.

Например, недавно американские исследователи пересаживали мышам, у которых была подавлена функция иммунной системы, опухолевые человеческие клетки, которые могли свободно размножаться и метастазировать в иммунодефицитных мышиных организмах. Ученым удалось определить экспрессированные в метастазирующих клетках и, синтезировав соответствующую интерферирующую РНК и введя ее мышам, заблокировать синтез «раковой» информационной РНК и, соответсвенно, подавить опухолевый рост и метастазирование.

То есть, исходя из современных исследований, можно говорить о том, что в основе различных процессов, происходящих в живых организмах, лежат эпигенетические сигналы. Что они из себя представляют? Какие факторы влияют на их формирование? Удается ли ученым эти сигналы дешифровать?

Сигналы могут быть самыми разными. При развитии и стрессе – это сигналы прежде всего гормональной природы, но есть данные, что к экспрессии генов белков теплового шока (HSP70) в культуре клеток может приводить даже влияние низкочастотного электромагнитного поля определенной частоты, интенсивность которого в миллион (!) раз меньше естественного электромагнитного поля. В данном случае это поле, конечно же, действует не «энергетически», а является неким сигнальным «триггером», «запускающим» экспрессию гена. Тут многое еще загадочно.

Например, недавно открытый bystander effect («эффект свидетеля»).
Вкратце его суть такова. Когда мы облучаем культуру клеток, у них возникают реакции широкого спектра, от хромосомных аберраций до радиоадаптивных реакций (способности выдерживать большие дозы облучения). Но если мы удалим все облученные клетки и в оставшуюся питательную среду перенесем другие, необлученные, у них проявятся те же реакции, хотя их никто не облучал.


Предполагается, что облученные клетки выделяют в среду некие эпигенетические «сигнальные» факторы, которые и вызывают в необлученных клетках аналогичные изменения. Какова природа этих факторов – пока никто не знает.

Большие ожидания в улучшении качества жизни и продолжительности жизни связаны с научными достижениями в области изучения стволовых клеток. Удастся ли эпигенетике оправдать возлагающиеся на нее надежды в перепрограммировании клеток? Есть ли для этого серьезные предпосылки?

Если будет разработана надежная методика «эпигенетического перепрограммирования» соматических клеток в стволовые, это, безусловно, окажется революцией в биологии и медицине. Пока в этом направлении сделаны только первые шаги, но они обнадеживают.

Известная сентенция: человек — то, что он ест. Какой эффект оказывает еда на наши ? Например, генетики из Университета Мельбурна , изучавшие механизмы работы клеточной памяти, обнаружили, что после получения одноразовой дозы сахара, клетка в течение нескольких недель хранит соответствующий химический маркер.

Есть даже специальный раздел эпигенетики — Nutritional Epigenetics , занимающийся именно вопросом зависимости эпигенетических процессов от особенностей питания. Особенно важны эти особенности на ранних стадиях развития организма. Например, при вскармливании младенца не материнским молоком, а сухими питательными смесями на основе коровьего молока, в клетках его тела происходят эпигенетиеские изменения, которые, фиксируясь по механизму импринтинга (запечатления), приводят со временем к началу аутоиммунного процесса в бета-клетках поджелудочной железы и, как следствие, заболеванию диабетом I типа.


На рис. развитие диабета (рис. увеличивается при нажатии курсором). При таких аутоиммунных заболеваниях, как диабет 1-го типа, иммунная система человека атакует его собственные органы и ткани.
Некоторые из аутоантител начинают вырабатываться в организме задолго до появления первых симптомов болезни. Их выявление может помочь в оценке риска развития заболевания.

(рисунок из журнала «В МИРЕ НАУКИ» , июль 2007 № 7)

А неполноценное (ограниченное по количеству калорий) питание в период внутриутробного развития – прямой путь к ожирению во взрослом возрасте и диабету II типа.

Это означает, что человек все-таки несет ответственность не только за себя, но и за своих потомков: детей, внуков, правнуков?

Да, конечно, причем в значительно большей степени, чем это было принято считать раньше.

А какова эпигенетическая составляющая в, так называемом, геномном импринтинге?

При геномном импринтинге один и тот же ген фенотипически проявляется по-разному в зависимости от того, от отца или матери он попадает к потомку. То есть, если ген наследуется от матери, то он уже метилирован и не экспрессируется, тогда как ген, наследуемый от отца не метилирован, и экспрессируется.

Наиболее активно изучается геномный импринтинг при развитии различных наследственных заболеваний, которые передаются только от предков определенного пола. Например, ювенильная форма болезни Гентингтона проявляется только при наследовании мутантного аллеля от отца, а атрофическая миотония — от матери.
И это при том, что сами , вызывающие эти заболевания, абсолютно одинаковы независимо от того, наследуются ли они от отца или матери. Различия заключаются в «эпигенетической предыстории», обусловленной их пребыванием в материнском или, наоборот, отцовском, организмах. Другими словами, они несут «эпигенетический отпечаток» пола родителя. При нахождении в организме предка определенного пола они метилируются (функционально репрессируются), а другого – деметилируются (соответственно, экспрессируются), и в таком же состоянии наследуются потомками, приводя (или не приводя) к возникновению определенных заболеваний.

Вы занимались изучением влияния радиации на организм. Известно, что малые дозы радиации положительно влияют на продолжительность жизнь плодовых мушек дрозофил . Возможна ли тренировка человеческого организма малыми дозами облучения? Александра Михайловича Кузина , высказанному им еще в 70-х годах прошлго века, к стимулирующему эффекту приводят дозы, примерно на порядок большие фоновых.

В Керале, например, уровень фона не в 2, а в 7,5 раз превышает «среднеиндийский» уровень, но ни заболеваемость раком, ни смертность от него не отличаются от общей индийской популяции.

(См., напр., последнее на эту тему: Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys. 2009 Jan;96(1):55-66 )

В одном из исследований Вы проанализировали данные по датам рождения и смерти 105 тысяч киевлян, которые умерли в период с 1990 по 2000 гг. Какие выводы были сделаны?

Наибольшей оказалась продолжительность жизни людей, родившихся в конце года (особенно в декабре), наименьшей – у «апрельских-июльских». Различия между минимальными и максимальными среднемесячными значениями оказались очень велики и достигали 2,6 года у мужчин и 2,3 года у женщин. Результаты, полученные нами, говорят о том, что то, сколько человек проживет, в значительной степени зависит от сезона года, в который он родился.

Возможно ли прикладное применение полученной информации?

Какими могли бы быть рекомендации? Например, зачинать детей весной (лучше всего – в марте), чтобы они были потенциальными долгожителями? Но это абсурд. Природа не дает одним все, а другим – ничего. Так и с «сезонным программированием». Например, в исследованиях, осуществленных во многих странах (Италии, Португалии, Японии), выявлено, что наивысшими интеллектуальными возможностями обладают школьники и студенты, родившиеся в конце весны – начале лета (по нашим данным – «короткожители»). Эти исследования демонстрируют бессмысленность “прикладных” рекомендаций по рождению детей в определенные месяцы года. А вот серьезным поводом для дальнейшего научного исследования механизмов, определяющих «программирование», а также поиска средств направленной коррекции этих механизмов с целью продления жизни в будущем, эти работы, безусловно, являются.

Один из пионеров эпигенетики в России, профессор МГУ Борис Ванюшин в своей работе «Материализация эпигенетики или Небольшие изменения с большими последствиями» написал, что век прошлый был веком генетики, а нынешний — век эпигенетики.

Что позволяет оценивать позиции эпигинетики так оптимистично?

После завершения программы «Геном человека» ученое сообщество было в шоке: оказалось, что информация о строении и функционировании человека заключена в приблизительно 30 тысячах генов (по разным оценкам, это всего около 8-10 мегабайт информации). Специалисты, которые работают в сфере эпигенетики, называют ее «второй информационной системой» и считают, что расшифровка эпигенетических механизмов контроля развития и жизнедеятельности организма приведет к революции в биологии и медицине.

Например, в ряде исследований уже удалось выявить типичные закономерности в таких рисунках. На их основе врачи могут диагностировать формирование онкозаболеваний на ранней стадии.
Но осуществим ли такой проект?

Да, конечно, хотя он очень затратный и вряд ли может быть реализован во время кризиса. А вот в перспективе – вполне.

Еще в 1970 году группа Ванюшина в журнале „Nature“ опубликовала данные о том, что регулирует клеточную дифференцировку, приводя к различиям в экспрессии генов. И Вы об этом говорили. Но если у организма в каждой клетке содержится один и тот же геном, то эпигеном у каждого типа клеток — свой, соответственно и ДНК метилирована по-разному. Учитывая, что типов клеток в человеческом организме порядка около двухсот пятидесяти — объем информации может быть колоссальным.

Именно поэтому проект «Эпигеном человека» и является очень сложным (хоть и не безнадежным) для реализации.

Он считает, что самые незначительные явления могут оказывать огромное влияние на жизнь человека: «Если окружающая среда играет такую роль в изменении нашего генома, тогда мы должны построить мост между биологическими и социальными процессами. Это абсолютно изменит наш взгляд на вещи».

Все настолько серьезно?

Конечно. Сейчас в связи с последними открытиями в области эпигенетики многие ученые говорят о необходимости критического переосмысления многих положений, которые казались либо незыблемыми, либо навсегда отвергнутыми, и даже о необходимости смены основополагающих парадигм в биологии. Подобная революция мышления, безусловно, может сказаться самым существенным образом на всех аспектах жизни людей, начиная от мировоззрения и стиля жизни и заканчивая взрывом открытий в биологии и медицине.

Информация о фенотипе содержится не только в геноме, но и в эпигеноме, который пластичен и может, изменяясь под воздействием определенных средовых стимулов, влиять на проявление генов – ПРОТИВОРЕЧИЕ ЦЕНТРАЛЬНОЙ ДОГМЕ МОЛЕКУЛЯРНОЙ БИОЛОГИИ, СОГЛАСНО КОТОРОЙ ПОТОК ИНФОРМАЦИИ МОЖЕТ ИДТИ ТОЛЬКО ОТ ДНК К БЕЛКАМ, НО НЕ НАОБОРОТ.
Индуцированные в раннем онтогенгезе эпигенетические изменения могут фиксироваться по механизму импринтинга и менять всю последующую судьбу человека (в том числе психотип, метаболизм, предрасположенность к заболеваниям и т.п.) – ЗОДИАКАЛЬНАЯ АСТРОЛОГИЯ.
Причиной эволюции, помимо случайных изменений (мутаций), отбираемых естественным отбором, являются направленные, адаптивные изменения (эпимутации) – КОНЦЕПЦИЯ ТВОРЧЕСКОЙ ЭВОЛЮЦИИ французского философа (Нобелевского лауреата по литературе, 1927 г.) Анри БЕРГСОНА.
Эпимутации могут передаваться от предков потомкам – НАСЛЕДОВАНИЕ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ, ЛАМАРКИЗМ.

На какие актуальные вопросы предстоит ответить м в ближайшем будущем?

Как происходит развитие многоклеточного организма, какова природа сигналов, настолько точно определяющих время возникновения, структуру и функции различных органов тела?

Можно ли, влияя на эпигенетические процессы, изменять организмы в желательном направлении?

Можно ли за счет корректировки эпигенетических процессов предотвращать развитие эпигенетически обусловленных заболеваний, например, диабета и рака?

Какова роль эпигенетических механизмов в процессе старения, можно ли с их помощью продлевать жизнь?

Возможно ли, что непонятные в наше время закономерности эволюционирования живых систем (эволюция «не по Дарвину») объясняются вовлеченностью эпигенетических процессов?

Естественно, это только мой персональный перечень, у других исследователей он может отличаться.