Момент инерции для чайников: определение, формулы, примеры решения задач. Формула момента инерции Момент инерции точечного тела и системы тел

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r 2 *ω

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой m i (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния r i 2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑ i (m i *r i 2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫ V (r i 2 *dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L 2 /12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R 2 /2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R 2 , здесь R - шара радиус.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I 1 +I 2 +I 3 = m 1 *r 1 2 + m 2 *r 2 2 + m 3 *r 3 2 = 2*(0,15) 2 +3*(0,05) 2 +1,5*(0,25) 2 = 0,14 625 кг*м 2 .

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с -1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫ V (r i 2 *dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫ L (r 2 *dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r 3 /3)∣ 0 L => I = ρ*S*L 3 /3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L 2 /3/(m*L 2 /12)=4).

Зависимость момента инерции от распределения масс

Описание

Момент инерции - величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.

Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело. Момент инерции элементарной (точечной) массы m i , отстоящей от оси на расстоянии r i , равен:

Момент инерции всего тела относительно оси равен:

или, для непрерывно распределенной массы:

Момент инерции всего тела сложной конфигурации обычно определяют экспериментально.

Момент инерции некоторых однородных твердых приведены в таблице 1.

Таблица 1

Момент инерции некоторых симметричных однородных тел

Твердое тело

Ось вращения

Момент инерции I, кг м 2

Тонкий стержень длины l

Перпендикулярна стержню, проходит через центр масс

ml 2 /12

Тонкий стержень длины l

Перпендикулярна стержню, проходит через край

ml 2 /3

Сплошной цилиндр радиуса R

Совпадает с осью цилиндра

mR 2 /2

Полый цилиндр радиуса R

Совпадает с осью цилиндра

mR 2

Шар радиуса R

Проходит через центр шара

2mR 2 /5

Полый шар радиуса R

Проходит через центр шара

2mR 2 /3

Тонкий диск радиуса R

Совпадает с диаметром диска

mR 2 /4

Тонкая прямоугольная пластина со сторонами а и b

Проходит через центр пластины перпендикулярно пластине

m (a 2 +b 2 )/12

Вычисление моментов инерции во многих случаях можно упростить, используя соображения симметрии и теорему Штейнера. Согласно теореме Штейнера момент инерции тела относительно какой-либо оси I A равен моменту инерции тела равен инерции тела относительно параллельной оси, проходящей через центр масс I C , сложенному с величиной ma 2 , где a - расстояние между осями:

I A = I C + ma 2 .

Понятием о моменте инерции широко пользуются при решении многих задач механики и техники.

Временные характеристики

Время инициации (log to от -20 до 20);

Время существования (log tc от -20 до 20);

Время деградации (log td от -20 до 20);

Время оптимального проявления (log tk от -1 до 2).

Диаграмма:

Технические реализации эффекта

"Мягкий" супермаховик

Момент инерции - основная характеристика вращающихся механизмов. Так в маховике стремятся повысить момент инерции за счет распределения большей части массы на обод колеса, для накопления энергии. Маховики применяют для выравнивания хода машин, они присутствуют в любом автомобильном двигателе, в магнитофонах, в швейных машинах, механических ножницах, прессах, гироскопах (см. например, 104002) и т. д.

На рис. 1 приведена схема устройства «мягкого» супермаховика, предназначенного для плавного разгона машин.

«Мягкий» супермаховик

Рис. 1

1 - внешний моток ленты;

2 - промежуточные витки ленты;

3 - барабан.

Повышение или понижение скорости достигается за счет изменения инертности супермаховика с помощью перераспределения массы ленты наполнителя.

Применение эффекта

А.с. 538 800: Способ регулирования энергии ударов в кузнечно-прессовых машинах ударного действия, заключающийся в изменении момента инерции маховых масс, отличающийся тем, что с целью повышения качества обрабатываемых изделий и долговечности машин, момент инерции изменяют путем подачи или отвода жидкости во внутренние полости маховых масс.

А.с. 523 213: Способ уравновешивания сил инерции подвижных элементов машин, заключающийся в том, что уравновешиваемый элемент машины соединяют с аккумулирующим телом и приводит их во вращение, отличающийся тем, что с целью повышения эффективности уравновешивания в качестве аккумулирующего тела используют маховик с изменяемым радиусом центра масс, например, центробежный регулятор.

Силы, возникающие в процессе вращательного движения, можно использовать для ускорения некоторых технологических процессов.

Литература

1. Иродов И.Е. Основные законы механики.- М.: Высшая школа, 1985.- 248 с.

2. Физическая энциклопедия.- М.: Большая Российская энциклопедия, 1992.- Т.3.- С.206-207.

Ключевые слова

  • момент инерции
  • масса тела
  • ось вращения

Разделы естественных наук:

Динамика

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J .

2. Физический смысл момента инерции. Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу. Сравните. Вращательное движение. Поступательное движение. Момент инерции представляет собой меру инерции тела во вращательном движении

Например, момент инерции диска относительно оси О" в соответствии с теоремой Штейнера:

Теорема Штейнера: Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим .

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) : . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:.

угловую скорость как вектор, величина которого численно равна угловой скорости, и направленный вдоль оси вращения, причем, если смотреть с конца этого вектора, то вращение направлено против часовой стрелки . Исторически сложилось 2 , что положительным направлением вращения считается вращение «против часовой стрелки», хотя, конечно, выбор этого направления абсолютно условен.  Для определения направления вектора угловой скорости можно также воспользоваться «правилом буравчика» (которое также называется «правилом правого винта») − если направление движения ручки буравчика (или штопора) совместить с направлением вращения, то направление движения всего буравчика совпадет с направлением вектора угловой скорости.

Вращающееся тело (колесо мотоцикла) стремиться сохранять положение оси вращения в пространстве неизменным.(гироскопический эффект) Поэтому возможно движение на 2-х колёсах, но не возможно стояние на двух колёсах Этот эфект используется в корабельных и танковых системах наведения орудий. (корабль качается на волнах, а орудие смотрит в одну точку) В навигации и др.

Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Главное свойство прецессии - безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила - гравитация Земли - действует постоянно.

19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бирнулли .

Идеальной жидкостью назвается воображаемая несжимаемая жидкость , в которой отсутствуют вязкость, внутреннее трение и теплопроводность . Так как в ней отсуствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. вязкой наз. жидкость , в которой при движении кроме нормальных напряжений наблюдаются и касательные напряжения

Рассматриваемые в Г. ур-ния относит. равновесия несжимаемой жидкости в поле сил тяжести (относительно стенок сосуда, совершающего движение по нек-рому известному закону, напр. поступательное или вращательное) дают возможность решать задачи о форме свободной поверхности и о плескании жидкости в движущихся сосудах - в цистернах для перевозки жидкостей, топливных баках самолётов и ракет и т. п., а также в условиях частичной или полной невесомости на космич. летат. аппаратах. При определении формы свободной поверхности жидкости, заключённой в сосуде, кроме сил гидростатич. давления, сил инерции и силы тяжести необходимо учитывать поверхностное натяжение жидкости. В случае вращения сосуда вокруг вертик. оси с пост. угл. скоростью свободная поверхность принимает форму параболоида вращения, а в сосуде, движущемся параллельно горизонтальной плоскости поступательно и прямолинейно с пост. ускорением а , свободной поверхностью жидкости является плоскость, наклонённая к горизонтальной плоскости под углом