Диаграмма состояния воды и правило фаз. Учебная книга по химии Диаграмма переход воды в пар

5. Фазовые превращения и диаграмма состояния воды

Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления, они называются диаграммами состояния в координатах Р---Т

На рисунке 5 приведена в схематической форме диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

В жидком состоянии - вода

Твёрдом - лёд

Газообразном - пар

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

лед = пар (кривая ОА)

лед = жидкость (кривая ОВ)

жидкость = пар (кривая ОС)

О - точка замерзания воды

Для воды критическая температура равна 374 градусов по цельсию. При нормальном давлении жидкая и парообразная фазы воды находятся между собой в равновесии при 100 градусов по цельсию, т.к. при этом давление пара над жидкостью сравнивается с внешним давлением и вода закипает. Пересечение трех кривых происходит в точке О - тройной точке, в которой все три фазы находятся между собой в равновесии.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА, отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении. Через некоторое время часть воды испарится, и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представ-ляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом -- сосуществуют. Кривая ОА называется кривой равновесия жидкость--пар или кривой кипения. В таблице 5 приведены значения давления насыщенного водяного пара при нескольких температурах.

Таблица 5

Температура

Давление насыщенного пара

Температура

Давление насыщенного пара

мм рт. ст.

мм рт. ст.

Молекулярная физика воды в трех ее агрегатных состояниях

Рис.5.2 Диаграмма агрегатных состояний воды в области тройной точки А. I -- лед. II -- вода. III -- водяной пар.

Вода встречается в природных условиях в трех состояниях: твердом -- в виде льда и снега, жидком -- в виде собственно воды, газообразном -- в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или же соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. приведена диаграмма агрегатных состояний воды в зависимости от температуры t и давления P. Из рис.5.2 видно, что в области I вода находится только в твердом виде, в области II -- только в жидком, в области III -- только в виде водяного пара. Вдоль кривой AC она находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB -- в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD -- в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).

Равновесие фаз по рис.5.2 вдоль кривых AB, АС и AD надо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы.

Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.

Все три кривые агрегатного состояния -- АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) -- пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P = 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t = 0,01°C (или T = 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки -- точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P = 1,013·10 5 Па и t = 100°C, и точку с координатами P = 2,211·10 7 Па и t кр = 374,2°C, соответствующими критической температуре -- температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.

Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона--Клаузиуса:

где T -- абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L -- удельная теплота соответственно испарения, плавления, сублимации; V 2 - V 1 -- разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду. Подробное решение этого уравнения относительно давления насыщенного водяного пара e 0 над поверхностью воды -- кривая AB и льда -- кривая AD, можно найти в курсе общей метеорологии.

Водно-химический режим и состояние оборудования теплофикационного контура горячего водоснабжения пятой очереди Свердловской ТЭЦ

Составляющими прямого сетевого потока являются: подпиточная вода и обратка (М- 6; «Градмаш»). В приложении 6 показано изменение расхода прямой сетевой воды на Свердловской ТЭЦ в различные периоды года. Закономерно...

Динамика сетки водородных связей в воде и аморфном льде

Рис.15. Модель «Превращения энергии при колебаниях» Модель (рис.15) иллюстрирует превращения энергии при гармонических колебаниях тела под действием квазиупругой силы...

Неидеальные системы

При определенных условиях две различные фазы одного вещества (например, жидкость и газ) могут сосуществовать друг с другом сколь угодно долгое время. Для этого необходимо выполнение следующих условий на границе двух фаз: , и...

Особенности выбора расходомера

Если колебания распространяются в направлении скорости потока, то они проходят расстояние L за время где а -- скорость звука в данной среде; V -- скорость потока...

Особенности полиморфизма

Атомы металла - исходя из геометрических соображений, могут образовать любую кристаллическую решетку. Однако устойчивым, а, следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии...

К физико-химическим превращениям относятся процессы изменения агрегатного состояния и кристаллической структуры вещества, подвергаемого обработке...

Фазовая плоскость, фазовые траектории. Предельный цикл. Изображение простейших процессов на фазовой плоскости. Изоклины, особые точки. Построение интегральных кривых с помощью изоклин. Построение интегральных кривых дельта-методом

Фазовая траектория -- траектория точки в фазовом пространстве, изображающая, как изменяется со временем t состояние динамической системы. Рассмотрим систему обыкновенных дифференциальных уравнений n-го порядка Y = F(x,Y)...

Физика высокомолекулярных соединений

Реакции этого типа были использованы Штаудингером для доказательства макромолекулярного строения природных, а затем и синтетических полимеров. Поливинилацетат был превращен им в поливиниловый спирт...

Физические основы голографии

Голограммы можно записывать не только на фотографических пластинках, но и в других средах. Существует множество разнообразных материалов, обладающих необходимыми для этого чувствительностью и разрешающей способностью...

Электрический расчет и автоматизация электрокалориферной установки

"right">Таблица 1 Способ нагрева Механизм преобразования энергии Область применения и ЭТО Сопротивлением (прямой и косвенный) Электрическая энергия превращается в тепловую при протекании тока через проводящие материалы Нагрев...

В физической химии системой называется тело или группа тел, выделенных из материального мира и имеющих определенные границы, которые отделяют их от окружающей среды. Системы могут быть гомогенными и гетерогенными . Система является гомогенной, если каждый параметр имеет во всех ее частях одинаковое значение или непрерывно изменяется от точки к точке. Например, вода дистиллированная (в каком7либо сосуде) - система гомогенная, так как в любой точке все свойства этой воды или одинаковы (плотность, удельная электропроводимость, теплопроводность и др.), или непрерывно изменяются от центра системы к ее границам (например, температура). К гомогенным системам относятся смеси газов, молекулярные и ионные растворы.

Гетерогенная система состоит из нескольких макроскопических частей, отделенных одна от другой видимыми поверхностями раздела. На этих поверхностях некоторые параметры изменяются скачком. Если создать насыщенный раствор какой-либо соли в воде, чему сопутствует наличие твердой соли на дне сосуда, то такая система "раствор + твердая соль" гетерогенна. В этом примере на границе раздела скачкообразно изменяются химический состав и плотность. Гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела, называются фазами . Например, совокупность кристаллов соли в насыщенном растворе составляет одну фазу, раствор над твердой солью - другую.

Состояние системы описывается совокупностью ее свойств (или свойств фаз) - температурой, давление, массой, плотностью, химическим составом, а также связями между изменениями этих свойств.

Каждое вещество, которое может быть выделено из системы и существовать вне ее, называется составляющим веществом. В водном растворе хлористого натрия составляющими веществами могут быть Н 2 O и NaCl, но не ионы Na + и Cl - , так как они не могут существовать вне раствора.

Важная характеристика системы - число компонентов (k), под которым понимают наименьшее число составляющих веществ, с помощью которых можно описать состав каждой фазы системы в отдельности.

Если в системе не протекает химических реакций, число компонентов равно числу составляющих веществ. Например, в однофазной системе из газообразных гелия, водорода и аргона число компонентов равно числу составляющих веществ, т.е. трем, так как реакции между этими газами невозможны.

В системе, где составляющие вещества способны взаимодействовать друг с другом, число компонентов всегда меньше числа составляющих веществ. Например, водород и газообразный иод реагирует с образованием газообразного иодистого водорода. В этой системе

H 2 (г) + I 2 (г) = 2HL(г)

концентрации составляющих веществ при равновесии связаны уравнением

2 / = K,

где К - константа равновесия, имеющая определенное значение при заданной температуре. В этом случае для определения состава равновесной системы достаточно знать концентрации любых двух составляющих веществ, так как концентрация третьего определяется уравнением. Иными словами, система имеет два компонента. В общем случае число компонентов равно числу составляющих веществ минус число уравнений, связывающих концентрации этих веществ в равновесной системе.

Для описания системы необходим еще один параметр - число степеней свободы с , которое означает число независимых переменных (температура, давление, концентрация составляющих веществ), определяющих термодинамическое состояние равновесия системы. Значения этих переменных можно в известных пределах произвольно изменять, не меняя числа и вида фаз в системе. По числу степеней свободы системы называют инвариантными, у которых число степеней свободы равно нулю, моновариантными - с одной степенью свободы, бивариантными - с двумя и т.д.

В 1876 г. Гиббсом было сформулировано правило фаз, которое охватывает все случаи равновесия систем как гомогенных, так и гетерогенных. Это правило гласит: Число степеней свободы с равновесной термодинамической системы, на которую из внешних факторов влияют только давление и температура, равно числу компонентов системы k плюс 2 и минус число фаз f , т.е.

c = k + 2 - f

Диаграмма состояния - наглядный способ представления областей существования различных фаз в зависимости от внешних условий, например от давления и температуры.

Диаграмма состояния воды - система с одним компонентом H 2 O, поэтому наибольшее число фаз, которые одновременно могут находиться в равновесии, равно трем. Эти три фазы - жидкость, лед, пар. Число степеней свободы в этом случае равно нулю, т.е. нельзя изменить ни давление, ни температуру, чтобы не исчезла ни одна из фаз. Обычный лед, жидкая вода и водяной пар могут существовать в равновесии одновременно только при давлении 0,61 кПа и температуре 0,0075°С. Точка сосуществования трех фаз называется тройной точкой (O ).

Кривая ОС разделяет области пара и жидкости и представляет собой зависимость давления насыщенного водяного пара от температуры. Кривая ОС показывает те взаимосвязанные значения температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом, поэтому она называется кривой равновесия жидкость-пар или кривой кипения.

Кривая ОВ отделяет область жидкости от области льда. Она является кривой равновесия твердое состояние-жидкость и называется кривой плавления. Эта кривая показывает те взаимосвязанные пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Кривая OA называется кривой сублимации и показывает взаимосвязанные пары значений давления и температуры, при которых в равновесии находятся лед и водяной пар.

И здесь уже можно перейти ко второй категории. Под словом «лед» мы привыкли понимать твердое фазовое состояние воды. Но помимо нее замораживанию подвергаются и другие вещества. Таким образом, лед можно различать по химическому составу исходного вещества, например, углекислый, аммиачный, метановый лед и другие.

В-третьих, различают кристаллические решетки (модификации) водяного льда, образование которых обусловлено термодинамическим фактором. Вот о них-то мы и поговорим немного в этой заметке.

В статье Лед мы с вами остановились на том, как происходит перестройка структуры воды с изменением ее агрегатных состояний, и затронули кристаллическое строение обыкновенного льда. Благодаря внутреннему устройству самой молекулы воды и водородным связям, соединяющим все молекулы в упорядоченную систему, образуется гексагональная (шестиугольная) кристаллическая решетка льда. Ближайшие друг к другу молекулы (одна центральная и четыре угловых) расположены в форме трехгранной пирамиды, или тетраэдра, который лежит в основе гексагональной кристаллической модификации (илл.1 ).

Кстати , расстояние между мельчайшими частицами вещества измеряются в нанометрах (нм) или ангстремах (по имени шведского физика XIX века Андерса Йонаса Ангстрема; обозначается символом Å). 1 Å = 0,1 нм = 10−10 м.

Такое шестиугольное строение обыкновенного льда распространяется на весь его объем. Наглядно в этом можно убедиться невооруженным глазом: зимой во время снегопада поймайте снежинку на рукав одежды или на перчатку и приглядитесь к ее форме – она шестилучевая или шестиугольная. Это характерно для каждой снежинки, но при этом ни одна снежинка никогда не повторяет другую (подробнее об этом в нашей статье ). И даже крупные кристаллы льда своей внешней формой отвечают внутреннему молекулярному строению (илл.2 ).

Мы уже говорили, что переход вещества, в частности воды, из одного состояния в другое осуществляется при наличии определенных условий. Привычный лед образуется при температуре от 0°C и ниже и при давлении в 1 атмосферу (нормальное значение). Следовательно, для появления иных модификаций льда требуется изменение этих значений, и в большинстве случаев наличие низких температур и высокого давления, при которых происходит изменение угла водородных связей и реконструкция всей кристаллической решетки.

Каждая модификация льда относится к определенной сингонии – группе кристаллов, в которых элементарные ячейки обладают одной и той же симметрией и системой координат (оси XYZ). Всего же различают семь сингоний. Характеристики каждой из них представлены на иллюстрациях 3-4 . А чуть ниже дано изображение основных форм кристаллов (илл.5 )

Все модификации льда, отличающиеся от обыкновенного, были получены в лабораторных условиях. О первых полиморфных структурах льда стало известно в начале XX века стараниями ученых Густава Таммана (Gustav Heinrich Tammann) и Перси Бриджмена (Percy Williams Bridgman) . Диаграмма модификаций, составленная Бриджменом, периодически дополнялась. Новые модификации выявляли из полученных ранее. Последние изменения в диаграмму были внесены уже в наше время. На данный момент получено шестнадцать кристаллических типов льда. Каждый тип имеет свое наименование и обозначается римской цифрой.

Мы не будем вникать глубоко в физические характеристики каждого молекулярного типа водяного льда, чтобы не утомлять вас, уважаемые читатели, научными подробностями, отметим только основные параметры.

Обыкновенный лед носит наименование лед Ih (приставка «h» означает гексагональную сингонию). На иллюстрации 7 представлена его кристаллическая структура, состоящая из шестиугольных связок (гексамеров), которые отличаются по форме – одна в виде шезлонга (англ. chair-form ), другая в виде ладьи (boat-form ). Эти гексамеры формируют трехмерную секцию – два «шезлонга» находятся по горизонтали вверху и внизу, а три «ладьи» занимают вертикальное положение.

На пространственной схеме показан порядок в расположении водородных связей льда Ih , но в действительности связи выстраиваются случайным образом. Впрочем, ученые не исключают, что водородные связи на поверхности гексагонального льда более упорядочены, чем внутри структуры.

Элементарная ячейка гексагонального льда (т.е. минимальный объем кристалла, повторное воспроизведение которого в трех измерениях, образует всю кристаллическую решетку в целом) включает в себя 4 молекулы воды. Размеры ячейки составляют 4,51 Å по сторонам a,b и 7.35 Å по стороне с (сторона, или ось с на схемах имеет вертикальное направление). Углы между сторонами, как видно из иллюстрации 4: α=β = 90°, γ = 120° . Расстояние между соседними молекулами равно 2.76 Å .

Гексагональные ледяные кристаллы образуют шестиугольные пластины и столбики; верхняя и нижняя грани в них являются базовыми плоскостями, а шесть одинаковых боковых граней называются призматическими (илл.10 ).

Минимальное количество молекул воды, необходимое для начала ее кристаллизации – около 275 (±25) . В значительной степени образование льда происходит на поверхности водной массы, граничащей с воздухом, нежели внутри нее. Кристаллы крупнозернистого льда Ih медленно формируются в направлении оси с, например, в стоячей воде они растут вертикально вниз от кристаллических пластинок, или в условиях, где рост в сторону затруднен. Мелкозернистый лед, образующийся в неспокойной воде или при быстром ее замерзании, имеет ускоренный рост, направленный от призматических граней. Температура окружающей воды определяет степень разветвленности кристаллической решетки льда.

Частицы растворенных в воде веществ, за исключением атомов гелия и водорода, чьи размеры позволяют им поместиться в полостях структуры, при нормальном атмосферном давлении исключаются из кристаллической решетки, вытесняясь на поверхность кристалла или, как в случае с аморфной разновидностью (об этом дальше в статье) образуя слои между микрокристаллами. Последовательные циклы замораживания-оттаивания воды могут быть использованы для очистки ее от примесей, например, газов (дегазация).

Наряду со льдом Ih существует также лед Ic (кубическая сингония ), правда, в природе образование этой разновидности льда изредка возможно только в верхних слоях атмосферы. Искусственно лед Ic получают путем моментального замораживания воды, для чего конденсируют пар на охлажденной от минус 80 до минус 110°С металлической поверхности при нормальном атмосферном давлении. В результате опыта на поверхность выпадают кристаллики кубической формы или в виде октаэдров. Создать кубический лед первой модификации из обычного гексагонального, понижая его температуру, не получится, а вот переход из кубического в гексагональный возможен при нагревании льда Ic выше минус 80°С .

В молекулярной структуре льда Ic угол водородных связей такой же, как и у обычного льда Ih – 109.5° . А вот шестигранное кольцо, образуемое молекулами, в решетке льда Ic присутствует только в форме шезлонга.

Плотность льда Ic равна 0.92 г/см³ при давлении в 1 атм. Элементарная ячейка в кубическом кристалле имеет 8 молекул и размеры: a=b=c = 6.35 Å, а ее углы α=β=γ = 90°.

На заметку. Уважаемые читатели, в данной статье мы неоднократно будем сталкиваться с показателями температуры и давления для того или иного типа льда. И если температурные значения, выраженные в градусах по Цельсию, всем понятны, то восприятие значений давления, возможно, для кого-то будет затруднено. В физике используются различные единицы для его измерения, но мы в нашей статье будем обозначать его в атмосферах (атм), округляя значения. Нормальное атмосферное давление составляет 1 атм, что равняется 760 мм ртутного столба, или чуть более 1 бара, или 0.1 МПа (мегапаскаль).

Как вы поняли, в частности, из примера со льдом Ic , существование кристаллических модификаций льда возможно в условиях термодинамического равновесия, т.е. при нарушении баланса температуры и давления, определяющего наличие какого-либо кристаллического вида льда, этот вид исчезает, переходя в иную модификацию. Диапазон этих термодинамических значений различается, для каждого вида он свой. Рассмотрим другие типы льда, не строго в номенклатурном порядке, а в связи с этими структурными переходами.

Лед II относится к тригональной сингонии. Он может образоваться из гексагонального типа при давлении около 3 000 атм и температуре около минус 75°С, или из другой модификации (лед V ), путем резкого снижения давления при температуре минус 35°С. Существование II типа льда возможно в условиях минус 170°С и давлении от 1 до 50 000 атм (или 5 гигапаскалей (ГПа)). По оценкам ученых, лед такой модификации, вероятно, может входить в состав ледяных спутников дальних планет Солнечной системы. Нормальное атмосферное давление и температура выше минус 113°C создают условия для перехода этого типа льда в обычный гексагональный лед.

На иллюстрации 13 показана кристаллическая решетка льда II . Видна характерная особенность структуры – своего рода, полые шестиугольные каналы, образуемые молекулярными связками. Элементарная ячейка (область, выделенная на иллюстрации ромбом) состоит из двух связок, которые смещены относительно друг друга, условно говоря, «по высоте». В результате образуется ромбоэдрическая система решетки. Размеры ячейки a=b=c = 7.78 Å; α=β=γ = 113.1°. В ячейке 12 молекул. Угол связей между молекулами (О–О–О) варьируется от 80 до 120°.

При нагреве II модификации можно получить лед III , и наоборот, охлаждение льда III превращает его в лед II . Также лед III образуется, когда температуру воды постепенно понижают до минус 23°С, увеличивая давление до 3 000 атм.
Как видно на фазовой диаграмме (илл. 6 ), термодинамические условия для стабильного состояния льда III , а также другой модификации – льда V , невелики.

Льды III и V имеют четыре тройные точки с окружающими модификациями (термодинамические значения, при которых возможно существование разных состояний вещества). Тем не менее, льды II , III и V модификаций могут существовать в условиях нормального атмосферного давления и температуры минус 170°С, а нагревание их до минус 150°С приводит к образованию льда Ic .

По сравнению с другими модификациями высокого давления, известными в настоящее время, лед III облает наименьшей плотностью – при давлении 3 500 атм. она равна 1.16 г/см³.
Лед III является тетрагональной разновидностью кристаллизованной воды, но сама структура решетки льда III имеет нарушения. Если обычно каждую молекулу окружают 4 соседние, то в данном случае этот показатель будет иметь значение 3.2, и кроме того поблизости могут находиться ещё 2 или 3 молекулы, которые не имеют водородных связей.
В пространственном построении молекулы образуют правосторонние спирали.
Габариты элементарной ячейки с 12 молекулами при минус 23°С и около 2800 атм: a=b = 6,66, c = 6,93 Å; α=β=γ = 90°. Угол водородных связей в диапазоне от 87 до 141°.

На иллюстрации 15 условно представлена пространственная схема молекулярного строения льда III . Молекулы (точки голубого цвета), распложенные ближе к зрителю, показаны крупнее, а водородные связи (линии красного цвета) соответственно толще.

А теперь, как говорится, по горячим следам, давайте сразу «перескочим» идущие после льда III в номенклатурном порядке кристаллические модификации, и скажем несколько слов о льде IX .
Этот вид льда, по сути, измененный лед III , подвергнутый быстрому глубокому охлаждению от минус 65 до минус 108°С во избежание трансформирования его в лед II . Лед IX сохраняет устойчивость при температуре ниже 133°С и давлении от 2 000 до 4 000 атм. Его плотность и структура идентична III виду, но в отличие от льда III в структуре льда IX имеется порядок в расположении протонов.
Нагревание льда IX не возвращает его к исходной III модификации, а превращает в лед II . Размеры ячейки: a=b = 6,69, c = 6,71 Å при температуре минус 108°С и 2800 атм.

Кстати , роман писателя-фантаста Курта Воннегута (Kurt Vonnegut) 1963 г. «Колыбель для кошки» строится вокруг вещества, именуемого лед-девять, который описывается как искусственно полученный материал, представляющий большую опасность для жизни, так как вода при контакте с ним кристаллизуется, превращаясь в лед-девять. Попадание даже небольшого количества этого вещества в природную акваторию, выходящую к мировому океану, грозит замерзанием всей воды на планете, что в свою очередь означает гибель всего живого. В конце концов, так все и происходит.

Лед IV представляет собой метастабильное (слабоустойчивое) тригональное образование кристаллической решетки. Его существование возможно в фазовом пространстве льдов III , V и VI модификаций. Получить лед IV можно из аморфного льда высокой плотности, медленно нагревая его, начиная от минус 130°С при постоянном давлении 8 000 атм.
Размер элементарной ромбоэдрической ячейки составляет 7.60 Å, углы α=β=γ = 70.1°. Ячейка включает в себя 16 молекул; водородные связи между молекулами асимметричные. При давлении 1 атм и температуре минус 163°С плотность льда IV равна 1.27 г/см³. Угол связей О–О–О: 88–128°.

Аналогично IV типу льда образуется и лед XII – путем нагревания высокоплотной аморфной модификации (об этом ниже) от минус 196 до минус 90°С при том же давлении 8 000 атм, но уже с более высокой скоростью.
Лед XII также метастабилен в фазовой области V и VI кристаллических типов. Является разновидностью тетрагональной сингонии.
Элементарная ячейка содержит 12 молекул, которые, благодаря водородным связям с углами 84–135°, располагаются в кристаллической решетке, образуя двойную правостороннюю спираль. Ячейка имеет размеры: a=b = 8.27, c = 4.02 Å; углы α=β=γ = 90º. Плотность льда XII составляет 1.30 г/см³ при нормальном атмосферном давлении и температуре минус 146°С. Углы водородных связей: 67–132°.

Из открытых на сегодняшний день модификаций водяного льда самую сложную кристаллическую структуру имеет лед V . 28 молекул составляют его элементарную ячейку; водородные связи пролегают через зазоры в других молекулярных соединениях, а некоторые молекулы образуют связи только с определенными соединениями. Угол водородных связей между соседними молекулами сильно различается – от 86 до 132°, поэтому в кристаллической решетке льда V имеется сильное напряжение и огромный запас энергии.
Параметры ячейки при условиях нормального атмосферного давления и температуры минус 175°С: a= 9.22, b= 7.54, c= 10.35 Å; α=β = 90°, γ = 109,2 °.
Лед V – это моноклинная разновидность, образуемая охлаждением воды до минус 20°С при давлении около 5 000 атм. Плотность кристаллической решетки с учетом давления 3 500 атм составляет 1.24 г/см³.
Пространственная схема кристаллической решетки льда V типа показана на иллюстрации 18 . Серым контуром выделена область элементарной ячейки кристалла.

Упорядоченное расположение протонов в структуре льда V делает его другой разновидностью, именуемой льдом XIII . Данную моноклинную модификацию можно получить в результате охлаждения воды ниже минус 143°С с добавлением соляной кислоты (HCl) для облегчения фазового перехода, создавая давление 5 000 атм. Обратимый переход от XIII типа к V типу возможен в диапазоне температур от минус 193°С до минус 153°С.
Размеры элементарной ячейки льда XIII слегка отличаются от V модификации: а= 9,24, b= 7,47, c= 10.30 Å; α=β = 90°, γ= 109,7 ° (при 1 атм, минус 193°С). Количество молекул в ячейке то же – 28. Угол водородных связей: 82–135°.

В следующей части нашей статьи мы продолжим обзор модификаций водяного льда.

До встречи на страницах нашего блога!

Состояние воды изучено в широком диапазоне температур и давлений. При высоких давлениях установлено существование не менее десяти кристаллических модификаций льда. Наиболее изученным является лед I – единственная модификация льда, обнаруженная в природе.

Наличие различных модификаций вещества – полиморфизма приводит к усложнению диаграмм состояния.

Фазовая диаграмма воды в координатах Р - Т представлена на рис.6. Она состоит из 3 фазовых полей - областей различных Р,Т - значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рисунке буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазномуравновесию

жидкая вода пар, и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т.к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные: температура и давление (С = 3 - 1 = 2).

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374,2ºС и 218,5 атм .). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает межфазная граница жидкость/пар), поэтому Ф = 1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию лед ↔ пар (С =1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD -кривая плавления, выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию лед ↔ жидкая вода. Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды

Рис.6. Фазовая диаграмма воды

аномально: жидкая вода занимает меньший объем, чем лед. Повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.

Исследования, впервые проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что всесуществующиекристаллические модификации льда, за исключением первой, плотнее воды. Таким образом, верхний предел линии AD - точка D, где в равновесии сосуществуют лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22ºС и 2450 атм .

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,0100ºС (T = 273,16K ) и 4,58 мм рт.ст. Число степеней свободы С = 3-3 = 0 и такое равновесие называют инвариантным.

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.

Критическая точка К имеет параметры:

p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.


Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .

Рисунок 2. Диаграмма p, v для воды и водяного пара.

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

  • величина с индексом «0» относится к начальному состоянию воды;
  • величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
  • величина с индексом «″» относится к сухому насыщенному пару;
  • величина с индексом «x » относится к влажному насыщенному пару;
  • величина без индекса относится к перегретому пару.

Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc p, v -диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .

На T, s -диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

r = T (s″ — s′ ).

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds .

На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.