Цианобактерии. Отличия от бактерий. Цианобактерии: первое семя космической колонизации

Общие сведения. Цианобактерии (цианеи) - фототрофные прокариоты, традиционно называемые синезелеными водорослями (Cyanophyta). Название «цианобактерии» широко употребляется в микробиологической литературе, в то время как в ботанической чаще сохраняется название «синезеленые водоросли». Благодаря большой изменчивости признаков в зависимости от условий среды число видов, указываемых разными авторами для этого отдела, резко отличается (200…2000).

Цианобактерии - водные в основном пресноводные), реже почвенные организмы. Организация клеток, наличие муреина в клеточной стенке, близость генетических свойств, способность фиксировать азот - все это сближает их с бактериями. Однако между ними существуют различия: более высокий уровень дифференциации тела; пигментная система (аналогичная таковой у эукариотических красных водорослей и существенно отличающаяся от системы фототрофных бактерий); фотосинтез с выделением кислорода. Эти признаки, а также водный образ жизни сближают цианобактерии с эукариотическими водорослями.

Цианобактерии - древнейшие из известных нам организмов, появившиеся около 3 млрд. лет тому назад. Остатки их находят в строматолитах протерозоя. С появлением цианобактерий в атмосфере начал накапливаться молекулярный кислород, создавая условия, необходимые для эволюции организмов, получающих энергию за счет аэробного дыхания.

Строение. К цианобактериям относят одноклеточные, колониальные и нитчатые фототрофные организмы (рис.1). Для них характерно полное отсутствие подвижных жгутиковых стадий и полового процесса. Хлоропластов нет; фотосинтетические пигменты находятся в мембранах, расположенных в цитоплазме.

Рис. 1. Цианобактерия носток: а - слизистые сливовидные колонии; б - нитчатые талломы цианобактерии (1) в общей слизи (3), видны гетероцисты (2)

Клетки имеют довольно толстые многослойные клеточные стенки, основной компонент которых - муреин. В клеточных стенках есть поры, через которые соединяются протопласты соседних клеток. Клеточные стенки обычно одеты слизистым чехлом, предохраняющим их от высыхания и облегчающим скользящее движение клеток и нитей.

Цитоплазма лишена вакуолей с клеточным соком, окрашена в периферических частях (хроматоплазма) и бесцветна в центре (центроплазма). В хроматоплазме расположены фотосинтезирующие одиночные тилакоиды. Их мембраны содержат хлорофилл a и каротиноиды. На поверхности тилакоидов локализованы в виде гранул - фикобилисом - дополнительные пигменты фикобилины: синие - фикоцианин и аллофикоцианин и красный - фикоэритрин. В отличие от растений тилакоиды не отграничены от цитоплазмы мембранами, отсутствует и хлорофилл b. Преобладание тех или иных пигментов и определяет окраску цианобактерий - от сине-зеленой до фиолетовой и красноватой или почти черной. Фотосинтез аэробный с выделением кислорода. В центральной части клеток находится нуклеоид обычного для прокариота строения. В цитоплазме имеются включения запасных веществ: гликогена, волютина. Белка цианофицина. Вакуолей с клеточным соком нет. Имеются газовые вакуоли, или псевдовакуоли. У ряда нитчатых форм наблюдаются образование гетероцист - крупных клеток, в которых происходит фиксация азота (рис.1). При этом тилакоиды разрушаются, формируются новые плотно упакованные мембранные концентрические и сетчатые структуры; исчезают фикобилины, принимающие участие в реакциях выделения кислорода при фотосинтезе. Создаются анаэробные условия. Необходимые для фиксации азота ферментом нитрогеназой. Образование гетероцист, как и азотфиксация, подавляется присутствием связанного азота, особенно аммиаком и нитратами. Функционирующие гетероцисты подавляют процесс перехода соседних вегетативных клеток в гетероцисты, таким образом, регулируется распределение гетероцист вдоль нити.

Цианобактерии способны образовывать споры - акинеты - крупные клетки с толстыми оболочками и запасом питательных веществ. Они могут выдержать высыхание и затем прорастают, каждая в новую особь.

Размножение. Вегетативное размножение у одноклеточных и колониальных происходит в результате деления клеток пополам после удвоения и расхождения хромосомы; у нитчатых - распадением нити.

Распространение и значение. Распространены цианобактерии повсеместно, среди них преобладают водные, главным образом пресноводные, но есть морские и почвенные организмы. Благодаря миксотрофности (способности сочетать одновременно различные типы питания - авто - и гетеротрофность) и возможности азотфиксации диапазон условий, в которых они способны обитать, чрезвычайно широк. Цианобактерии первыми заселяют обнаженные после вулканических извержений или ядерных взрывов скалы, создавая органическое вещество, формируя почвы; вступают в симбиоз с грибами (образуя самые выносливые лишайники), мхами, папоротниками. Цианобактерии развиваются в воде горячих источников и на ледниках. Пустынные почвы - такыры - обязаны им своим образованием.

Значение цианобактерий велико как в природе, так и в жизни людей. Их массовое развитие в планктоне медленно текущих рек, озер, прудов вызывает «цветение» воды. Особенно резко увеличивается их численность в загрязненных водоемах, куда поступают органические вещества, и удобрения с полей, в почти стоячей, хорошо прогреваемой воде мелко водных водохранилищ. При отмирании и гниении клеток цианей выделяются токсичные вещества, вода приобретает неприятный запах и становится непригодной для питья, происходит массовая гибель рыбы - так называемый замор - настоящее бедствие в прудовом рыбном хозяйстве. Отмирающие цианобактерии благодаря газовым вакуолям всплывают на поверхность и образуют маслянистую грязно-зеленую пленку, не пропускающую воздух.

Массовое развитие красного от избытка фикоэритрина Trichdesmium erythraeum дало название Красному морю. Морские виды цианей фиксируют около 1/4 всего поглощаемого морем азота.

Цианобактерии используются в качестве зеленого удобрения Анабена (Anabena oryza, A.cylindrica и другие виды) в симбиозе с папоротником азолла обладает способностью фиксировать азот атмосферы. Внесенные в почву перед посевом, они повышают урожайность риса на 50%. Действие продолжается в течение двух лет и эквивалентно использованию 60 кг/га азотного удобрения.

Некоторые виды спирулины (Spirulina maxima и др.), нити которой скручены в правильную спираль, содержат 60…80 % протеинов от сухой массы, а также физиологически активные вещества, йодсодержащие гормоны и простагландины.

Более 2000 лет используют спирулину в пищу африканцы в районе оз. Чад. Современная медицина рекомендует спирулину и препараты из нее в качестве биодобавок. Цианобактерии имеют в жизни человека как положительное (азотфиксация, съедобность), так и отрицательное значение (порча воды, гибель рыбы, засорение фильтров водозаборных сооружений).

Среди существующих ныне организмов встречаются такие, о принадлежности которых к какому-либо идут постоянные споры. Так происходит и существами под названием цианобактерии. Хотя даже названия точного у них нет. Слишком много синонимов:

  • синезеленые водоросли;
  • цианобионты;
  • фикохромовые дробянки;
  • цианеи;
  • слизиевые водоросли и прочие.

Вот и получается, что цианобактерия - это совершенно мелкий, но в то же время такой сложный и противоречивый организм, который требует внимательного изучения и рассмотрения своей структуры с целью определения точной таксономической принадлежности.

История существования и открытия

Судя по ископаемым остаткам, история существования синезеленых водорослей уходит своими корнями далеко в прошлое, на несколько миллионов лет назад. Такие выводы позволили сделать исследования ученых-палеонтологов, проанализировавших горные породы (их участки) тех далеких времен.

На поверхности образцов были обнаружены цианобактерии, строение которых ничем не отличалось от такового у современных форм. Это свидетельствует о высокой степени приспособленности данных существ к различным условиям обитания, к их крайней выносливости и выживаемости. Очевидно, что за миллионы лет происходило множество изменений в температурном и газовом составе планеты. Однако ничто не повлияло на жизнеспособность цианей.

В современности цианобактерия - это одноклеточный организм, который был открыт одновременно с остальными формами бактериальных клеток. То есть Антонио Ван Левенгуком, Луи Пастером и другими исследователями в XVIII-XIX веках.

Более тщательному изучению они подверглись позже, с развитием электронной микроскопии и модернизированных способов и методов исследования. Были выявлены особенности, которыми обладают цианобактерии. Строение клетки включает ряд новых, не встречающихся у других существ, структур.

Классификация

Вопрос определения их таксономической принадлежности остается открытым. Пока известно только одно: цианобактерии - прокариоты. Подтверждением этому являются такие особенности, как:

  • отсутствие ядра, митохондрий, хлоропластов;
  • наличие в клеточной стенке муреина;
  • молекулы S-рибосом в составе клетки.

Тем не менее цианобактерии - прокариоты, насчитывающие около 1500 тысяч разновидностей. Все их классифицировали и объединили в 5 больших морфологических группировок.

  1. Хроококковые. Достаточно многочисленная группа, объединяющая одиночные или колониальные формы. Высокие концентрации организмов удерживаются вместе за счет общей слизи, выделяемой клеточной стенкой каждой особи. По форме к этой группе относятся палочковидные и шаровидные структуры.
  2. Плеврокапсовые. Очень схожи с предыдущими формами, однако появляется особенность в виде формирования беоцитов (подробнее об этом явлении позже). Входящие сюда цианобактерии относятся к трем основным классам: Плеврокапсы, Дермокапсы, Миксосарцины.
  3. Оксиллатории. Главная особенность этой группы в том, что все клетки объединяются в общую слизевую структуру под названием трихома. Деление происходит, не выходя за пределы этой нити, внутри. Осциллатории включают в свой состав исключительно вегетативные клетки, делящиеся бесполым способом пополам.
  4. Ностоковые. Интересны за свою криофильность. Способны обитать на открытых ледяных пустынях, образуя на них цветные налеты. Так называемое явление "цветения ледяных пустынь". Формы данных организмов также нитчатые в виде трихом, однако размножение половое, при помощи специализированных клеток - гетероцист. Отнести сюда можно следующих представителей: Анабены, Ностоки, Калотриксы.
  5. Стигонемовые. Очень схожи с предыдущей группой. Главное отличие в способе размножения - они способны делиться множественно в пределах одной клетки. Самый популярный представитель данного объединения - Фишереллы.

Таким образом, и классифицируют цианей по морфологическому критерию, так как по остальным возникает много вопросов и получается путаница. Ботаники и микробиологи к общему знаменателю в систематике цианобактерий пока прийти не могут.

Места обитания

Благодаря наличию особых приспособлений (гетероцист, беоцитов, необычных тиллакоидов, газовых вакуолей, способности фиксировать молекулярный азот и прочих) данные организмы расселились повсеместно. Они способны выживать даже в самых экстремальных условиях, в которых вообще ни один живой организм существовать не может. Например, горячие термофильные источники, анаэробные условия с атмосферой сероводорода, с рН меньше 4.

Цианобактерия - это организм, спокойно выживающий на морском песке и скалистых выступах, ледяных глыбах и жарких пустынях. Узнать и определить присутствие цианей можно по характерному цветному налету, который образуют их колонии. Цвет может быть различным, от иссиня-черного до розового и фиолетового.

Синезелеными их называют за то, что часто на поверхности обычных пресных или соленых вод они формируют сине-зеленую слизевую пленку. Такое явление получило название "цветение воды". Его можно видеть практически на любом озере, которое начинает зарастать и заболачиваться.

Особенности строения клетки

Цианобактерии строение имеют обычное для прокариотических организмов, однако имеются и кое-какие особенности.

Общий план строения клетки следующий:

  • клеточная стенка из полисахаридов и муреина;
  • билипидного строения;
  • цитоплазма со свободно распределенным генетическим материалом в виде молекулы ДНК;
  • тиллакоиды, выполняющие функцию фотосинтеза и содержащие пигменты (хлорофиллы, ксантофиллы, каротиноиды).

Виды специализированных структур

В первую очередь это гетероцисты. Данные структуры - не части, а сами клетки в составе трихомы (общей колониальной нити, объединенной слизью). Они отличаются при рассмотрении в микроскоп своим составом, так как основная функция их - выработка фермента, позволяющего фиксировать молекулярный азот из воздуха. Поэтому пигментов в гетероцистах практически нет, а вот азота достаточно много.

Во-вторых, это гормогонии - участки, вырванные из трихомы. Служат местами размножения.

Беоциты - это своеобразные дочерние клетки, в массе наделившиеся из одной материнской. Иногда их число достигает тысячи за один период деления. К такой особенности способны Дермокапсы и другие Плеврокапсодиевые.

Акинеты - особые клетки, находящиеся в состоянии покоя и включенные в состав трихомы. Отличаются более массивной, богатой полисахаридами клеточной стенкой. Роль их схожа с гетероцистами.

Газовые вакуоли - их имеют все цианобактерии. Строение клетки изначально подразумевает их наличие. Роль их - принимают участие в процессах цветения воды. Другое название подобных структур - карбоксисомы.

Они, безусловно, есть и в растительных, и в животных, и в бактериальных клетках. Однако у синезеленых водорослей эти включения несколько иные. К ним относятся:

  • гликоген;
  • гранулы полифосфата;
  • цианофицин - особое вещество, состоящее из аспартата, аргинина. Служит для накопления азота, так как эти включения находятся в гетероцистах.

Это то, чем обладает цианобактерия. Основные части и специализированные клетки и органоиды - вот то, что позволяет цианеям осуществлять фотосинтез, но при этом относиться к бактериям.

Размножение

Данный процесс не представляет особой сложности, так как такой же, какой имеют обычные бактерии. Цианобактерии могут делиться вегетативно, частями трихом, обычной клеткой надвое, либо осуществлять половой процесс.

Часто в этих процессах участвуют специализированные клетки гетероцисты, акинеты, беоциты.

Способы передвижения

Клетка цианобактерии снаружи покрыта а иногда еще и слоем специального полисахарида, способного формировать слизевую капсулу вокруг нее. Именно благодаря этой особенности и осуществляется движение цианей.

Жгутиков или специальных выростов нет. Движение может осуществляться только по твердой поверхности при помощи слизи, короткими сокращениями. Некоторые Осциллатории имеют очень необычный способ перемещения - они крутятся вокруг своей оси и одновременно вызывают вращение всей трихомы. Так происходит движение по поверхности.

Способность к фиксации азота

Данной особенностью обладает практически каждая цианобактерия. Это возможно, благодаря наличию фермента нитрогеназы, способной фиксировать молекулярный азот и переводить его в удобоваримую форму соединений. Происходит это в структурах гетероцистах. Следовательно, те виды, что их не имеют, из воздуха не способны.

Вообще, этот процесс делает цианобактерии очень важными существами для жизни растений. Поселяясь в почве, цианеи помогают представителям флоры усваивать связанный азот и вести нормальный образ жизни.

Анаэробные виды

Некоторые формы синезеленых водорослей (например, Осциллатории) способны жить в совершенно анаэробных условиях и атмосфере сероводорода. В этом случае происходит переработка соединения внутри организма и в результате образуется молекулярная сера, выходящая в окружающую среду.

Цианобактерии — изобретатели оксигенного фотосинтеза и создатели кислородной атмосферы Земли — оказались еще более универсальными «биохимическими фабриками», чем ранее считалось. Выяснилось, что они могут совмещать в одной и той же клетке фотосинтез и фиксацию атмосферного азота — процессы, ранее считавшиеся несовместимыми.

Цианобактерии , или, как их раньше называли, синезеленые водоросли, сыграли ключевую роль в эволюции биосферы. Именно они изобрели наиболее эффективный вид фотосинтеза — оксигенный фотосинтез, идущий с выделением кислорода. Более древний аноксигенный фотосинтез, идущий с выделением серы или сульфатов, может происходить только в присутствии восстановленных соединений серы (таких как сероводород) — веществ достаточно дефицитных. Поэтому аноксигенный фотосинтез не мог обеспечить производство органики в количестве, необходимом для развития разнообразных гетеротрофов (потребителей органики), включая животных.

Цианобактерии научились использовать вместо сероводорода обычную воду, что обеспечило им широкое распространение и огромную биомассу. Побочным результатом их деятельности стало насыщение атмосферы кислородом. Без цианобактерий не было бы и растений, ведь растительная клетка — результат симбиоза нефотосинтезирующего одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл — пластид , которые суть не что иное, как симбиотические цианобактерии. И не ясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения — всего лишь удобные «домики» для проживания цианобактерий.

Цианобактерии не только создали биосферу «современного типа», но и по сей день продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии — одни из немногих живых существ, способных фиксировать атмосферный азот, переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только бактерии, и то далеко не все.

Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации — нитрогеназы — не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие — покрытые плотной оболочкой «гетероцисты» — не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).

До недавнего времени считалось, что совместить фотосинтез и азотфиксацию в одной и той же клетке невозможно. Однако 30 января Артур Гроссман и его коллеги из (Вашингтон, США) сообщили о важном открытии, показывающем, что ученые до сих пор сильно недооценивали метаболические способности цианобактерий. Оказалось, что живущие в горячих источниках цианобактерии рода Synechococcus (к этому роду относятся примитивные, древние, чрезвычайно широко распространенные одноклеточные цианобактерии) ухитряются совмещать в своей единственной клетке оба процесса, разделяя их во времени. Днем они фотосинтезируют, а ночью, когда концентрация кислорода в микробном сообществе (циано-бактериальном мате) резко падает, переключаются на азотфиксацию.

Открытие американских ученых не стало полной неожиданностью. В прочтенных за последние годы геномах нескольких разновидностей Synechococcus были обнаружены гены белков, связанных с азотфиксацией. Не хватало только экспериментальных подтверждений того, что эти гены действительно работают.

Вот график, который показывает уровень кислорода в атмосфере Земли за последние 4 миллиарда лет:

Накопление O2 в атмосфере Земли. Источник: Wikipedia

Пояснение к рисунку:
Зелёный график - нижняя оценка уровня кислорода, красный - верхняя оценка.
1 . (3,85–2,45 млрд лет назад) - Кислород не генерировался
2 . (2,45–1,85 млрд лет назад) Кислород генерировался, но поглощался океаном и породами морского дна
3 . (1,85–0,85 млрд лет назад) Кислород выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя
4 . (0,85–0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление кислорода в атмосфере
5 . (0,54 млрд лет назад - по настоящее время) современный период, содержание кислорода в атмосфере стабилизировалось

Как вы видите, еще 2,5 млрд лет назад в атмосфере Земли практически не было кислорода. Затем уровень кислорода в атмосфере резко увеличился. Что привело к такому росту? Цианобактерии !

Цианобактерии и их уникальная история

Цианобактерии , называемые также как синезелёные водоросли , или оксифотобактерии , или цианопрокариоты , или цианеи  - это одноклеточные бактерии, которые получают энергию от фотосинтеза . Считается, что они являются первым видом на Земле, который развил способности фотосинтеза. Генерация кислорода в качестве побочного продукта фотосинтеза в конечном итоге привела к распространению многоклеточных организмов и, следовательно, к появлению животной жизни на Земле. Более того, цианобактерии - единственный вид в истории нашей планеты, который начал использовать фотосинтез - все растения и водоросли получили эту способность от них.

Большое цветение цианобактерий в озере Атитлан в Гватемале, Центральная Америка. Вид из космоса. Источник: NASA

Выжившие за миллиарды лет и имеющие широкое генетическое разнообразие, цианобактерии встречаются практически везде, будь то на суше или в воде. Они могут цвести в океанской воде или выживать в сухих пустынях. Некоторые виды цианобактерий даже прижились в антарктических породах.

Цианобактерии являются экстремофилами , что означает, что они способны выживать в экстремальных условиях. Цианобактерии даже выживали за пределами Международной космической станции (МКС) в течение 16 месяцев .

Цианобактерии были размещены в лотках за пределами МКС, где они подвергались экстремальным уровням радиации и колебаниям температуры. Они не только выжили в течение 16 месяцев, но и хорошо адаптировались к холоду вакуума.

Микроорганизмы, установленные на лотках вне МКС, подвергались воздействию суровой космической среды в течение 16 месяцев. Источник: Farunhofer.de

Цианобактерии были создателями земной атмосферы, теперь они могут стать архитекторами космической цивилизации.

Уникальные свойства цианобактерий в сочетании с их экстремофильной природой вызвали интересные идеи для их применения в исследовании космоса.

Как цианобактерии могут использоваться для космических поселений

Полезные применения цианобактерий в освоении космоса охватывают широкий диапазон:

  1. Источник энергии : в процессе фотосинтеза цианобактерии вытесняют свободные электроны высокой энергии в окружающую среду, тем самым вырабатывая электричество от солнечного света. В настоящее время ведутся исследования способов использования этого электричества путем разработки внутренних путей фотосинтеза цианобактерий. Это может обеспечить чистый, надежный и эффективный источник энергии для небольших применений в космических полетах, где другие источники не являются жизнеспособными.
  2. Источник кислорода: это идея с использованием цианобактерий для генерирования кислорода в атмосфере. Диоксид углерода (углекислый газ) составляет 96% атмосферы Марса. Мы, люди, нуждаемся в кислороде, чтобы выжить, и цианобактерии могут превратить достаточное количество углекислого газа в необходимый для дыхания кислород.

3. Сельское хозяйство : виды цианобактерий под названием Microcoleus vaginatus сохраняют воду в почве и предотвращают эрозию. Это потенциально делает их очень полезными для сельского хозяйства на инопланетных почвах, где вода не будет легко доступна.

Исследования Lab2Moon

Любые известные виды цианобактерий могут быть использованы только в том случае, если они смогут надежно работать во враждебных условиях космического пространства. Хотя цианобактерии были тщательно протестированы в суровых условиях в нескольких экспериментальных установках на Земле, космическая среда гораздо более враждебна. Поэтому, следующий шаг - увидеть, как они реагируют на экстремальные космические среды. Это и есть цель трех экспериментов Lab2Moon на борту посадочного модуля TeamIndus Moon .

№ 1: Space4Life - Разработка радиационного щита с использованием цианобактерий

Электроника и люди на борту космического корабля должны быть надежно защищены от разрушительной радиации и космических лучей космического пространства. Стандартным материалом для достижения этого традиционно был свинец. Тем не менее, ученые, стоящие за


Систематика
на Викивидах
Изображения
на Викискладе

Эволюционное и систематическое положение

Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых ( , возраст более 3,5 млрд лет) обнаружены на Земле. Это единственные бактерии, способные к . Цианобактерии относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов. Предки цианобактерий рассматриваются в теории как наиболее вероятные предки . Внесистематическая группировка под условным названием «прохлорофиты» согласно этой теории имеет общих предков с прочих водорослей и высших растений.

Цианобактерии являются объектом исследования как (как организмы, физиологически схожие с водорослями), так и (как ). Сравнительно крупные размеры клеток и сходство с водорослями было причиной их рассмотрения ранее в составе («синезелёные водоросли»). За это время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 видов. , и сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств.

Жизненные формы и экология

Синезелёные водоросли, высохшие на берегу Киевского водохранилища

В морфологическом отношении цианопрокариоты — разнообразная и полиморфная группа. Общие черты их морфологии заключаются только в отсутствии жгутиков и наличии клеточной стенки ( , состоящий из ). Поверх слоя пептидогликана толщиной 2—200 нм имеют наружную мембрану. Ширина или диаметр клеток варьируется от 0,5 мкм до 100 мкм. Цианобактерии — , и микроорганизмы. Отличаются выдающейся способностью адаптировать состав к спектральному составу света, так что цвет варьируется от светло-зелёного до тёмно-синего. Некоторые цианобактерии способны к — формированию специализированных клеток: и . Гетероцисты выполняют функцию , в то время как другие клетки осуществляют фотосинтез.

Большинство цианобактерий — облигатные , которые, однако способны к непродолжительному существованию за счёт расщепления накопленного на свету в и в процессе (достаточность одного гликолиза для поддержания жизнедеятельности подвергается сомнению).

Значение

Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле, что привело к « » — глобальному изменению состава атмосферы Земли, произошедшему в самом начале протерозоя (около 2,4 млрд лет назад) которое привело к последующей перестройке биосферы и глобальному .

В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале большей части и производят значительную часть (вклад точно не определён: наиболее вероятные оценки колеблются от 20 % до 40 %).

Цианобактерия стала первым фотосинтезирующим организмом, чей был полностью расшифрован.

В настоящее время цианобактерии служат важнейшими исследований в биологии. В и бактерии родов и из-за недостатка других видов продовольствия используют в пищу: их высушивают, а затем готовят муку. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения.

Классификация

Исторически существовало несколько систем классификации высших уровней цианобактерий.

  • Класс
    • Роды
    • Подкласс
      • Порядок
      • Порядок
    • Подкласс
      • Порядок —
    • Подкласс
      • Порядок —
      • Порядок
      • Порядок —
      • Порядок —
      • Порядок
    • Подкласс
      • Порядок
      • Порядок
  • Роды
  • Порядок
  • Порядок
  • Порядок —
  • Порядок —
  • Порядок
  • Порядок