Интерполяция методом ньютона по заданным табличным данным. Интерполяционная формула ньютона. Интерполяция по формулам Ньютона с заданной точностью

Аннотация

Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.


Введение

Анализ задания

Математическая модель задачи

Программирование функции формулы Ньютона

Обзор литературных источников

Разработка программы по схеме алгоритма

Инструкция пользования программой

Текст программы

Исходные данные и результат решения контрольного примера

Заключение

Список использованных источников


Введение

Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.

Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.

В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.


Анализ задания

В качестве входных данных использованы:

1. Количество узлов.

2. Табличные значения функции.

Выходными данными, т.е. результатом программы является:

1. Значения таблично заданной функции в промежуточных значениях.

2. График полинома.


Математическая модель задачи

При выполнении курсовой работы была выбрана следующая математическая модель:

Интерполяция и приближение функций.

1. Постановка задачи.

Одной из основных задач численного анализа является задача об интерполяции функций. Часто требуется восстановить функцию

для всех значений на отрезке если известны ее значения в некотором конечном числе точек этого отрезка. Эти значения могут быть найдены в результате наблюдений (измерений) в каком-то натурном эксперименте, либо в результате вычислений. Кроме того, может оказаться, что функция задается формулой и вычисления ее значений по этой формуле очень трудоемки, поэтому желательно иметь для функции более простую (менее трудоемкую для вычислении) формулу, которая позволяла бы находить приближенное значение рассматриваемой функции с требуемой точностью в любой точке отрезка. В результате возникает следующая математическая задача.

Пусть и» отрезке

задана сетка со

и в ее узлах заданы значения функции

, равные .

Требуется построить интерполянту - функцию

, совпадающую с функцией в узлах сетки: .

Основная цель интерполяции - получить быстрый (экономичный) алгоритм вычисления значений

для значений , не содержащихся в таблице данных.

2. Интерполяция по Ньютону

Дана табличная функция:

i
0
1
2
.. .. ..
n
, (1)

Точки с координатами

называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например,

, причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен

через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

,

известны значения функции

. Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения , , .

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

Выборка экспериментальных данных представляет собой массив данных, который характеризует процесс изменения измеряемого сигнала в течение заданного времени (либо относительно другой переменной). Для выполнения теоретического анализа измеряемого сигнала необходимо найти аппроксимирующую функцию, которая свяжет дискретный набор экспериментальных данных с непрерывной функцией - интерполяционным полиномом n -степени. Данный интерполяционный полином n-степени может быть записан, например, в форме Ньютона (один из способов представления).

Интерполяционный многочлен в форме Ньютона – это математическая функция позволяющая записать полином n -степени, который будет соединять все заданные точки из набора значений, полученных опытным путём или методом случайной выборки с постоянным/переменным временным шагом измерений.

1. Интерполяционная формула Ньютона для неравноотстоящих значений аргумента

В общем виде интерполяционный многочлен в форме Ньютона записывается в следующем виде:

где n – вещественное число, которое указывает степень полинома;

– переменная, которая представляет собой разделенную разность k-го порядка, которая вычисляется по следующей формуле:

Разделённая разность является симметричной функцией своих аргументов, то есть при любой их перестановке её значение не меняется. Следует отметить, что для разделённой разности k-го порядка справедлива следующая формула:

В качестве примера, рассмотрим построение полинома в форме Ньютона по представленной выборке данных, которая состоит из трех заданных точек . Интерполяционный многочлен в форме Ньютона, который проходит через три заданных точки, будет записываться в следующем виде:

Разделенная разность 1-го порядка определяется следующим выражением

Разделенная разность 2-го порядка определяется следующим выражением

Следует отметить, что данное выражение может быть переписано в другом виде:

Форма Ньютона является удобной формой представления интерполяционного полинома n-степени, так как при добавлении дополнительного узла все вычисленные ранее слагаемые остаются без изменения, а к выражению добавляется только одно новое слагаемое. Следует отметить, что интерполяционный полином в форме Ньютона только по форме отличается от интерполяционного полинома в форме Лагранжа, представляя собой на заданной сетке один и тот же интерполяционный полином.

Следует отметить, что полином в форме Ньютона может быть представлен в более компактном виде (по схеме Горнера), которая получается путем последовательного вынесения за скобки множителей

2. Интерполяционная формула Ньютона для равноотстоящих значений аргумента

В случае если значения функции заданы для равноотстоящих значений аргумента, которые имеют постоянный шаг измерений , то используют другую форму записи интерполяционного многочлена по формуле Ньютона.

Для интерполирования функции в конце рассматриваемого интервала (интерполирование назад и экстраполирование вперед

где конечные разности k

Получаемые конечные разности удобно представлять в табличной форме записи, в виде горизонтальной таблице конечных разностей. В этой формуле из таблицы конечных разностей используются верхней диагонали.

Для интерполирования функции в начале рассматриваемого интервала (интерполирование вперед и экстраполирование назад ) используют интерполяционный полином в форме Ньютона в следующей записи:

где конечные разности k -порядка определяются по следующему выражению

Получаемые конечные разности удобно представлять в табличной форме записи, в виде горизонтальной таблице конечных разностей. В формуле из таблицы конечных разностей используются нижней диагонали.

3. Погрешность интерполяционного полинома в форме Ньютона

Рассмотрим функцию f (x ), которая непрерывна и дифференцируема на рассматриваемом отрезке . Интерполяционный полином P (x) в форме Ньютона принимает в точках заданные значения функции . В остальных точках интерполяционный полином P (x) отличается от значения функции f (x ) на величину остаточного члена , который определяет абсолютную погрешность интерполяционной формулы Ньютона:

Абсолютную погрешность интерполяционной формулы Ньютона определяют следующим образом:

Переменная представляет собой верхнюю границу значения модуля (n +1)-й производной функции f(x) на заданном интервале

В случае равноотстоящих узлов абсолютная погрешность интерполяционной формулы Ньютона определяют следующим образом:

Выражение записано с учетом следующей формулы:

Выбор узлов интерполяции

С помощью корректного выбора узлов можно минимизировать значение в оценке погрешности, тем самым повысить точность интерполяции. Данная задача может быть решена с помощью многочлена Чебышева:


В качестве узлов следует взять корни этого многочлена, то есть точки:

4. Методика вычисления полинома в форме Ньютона (прямой способ)

Алгоритм вычисления полинома в форме Ньютона позволяет разделить задачи определения коэффициентов и вычисления значений полинома при различных значениях аргумента:

1. В качестве исходных данных задается выборка из n -точек, которая включает в себя значения функции и значения аргумента функции.

2. Выполняется вычисление разделенных разностей n-порядка, которые будет использоваться для построения полинома в форме Ньютона.

3. Выполняется вычисление полинома n-степени в форме Ньютона по следующей формуле:

Алгоритм вычисления полинома в форме Ньютона представлен на рисунке 1.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет приборостроения и информатики Сергиево-Посадский филиал

Реферат на тему:

Интерполяционные формулы Ньютона

Выполнила: Бревчик Таисия Юрьевна

Студентка 2 курса группы ЭФ-2

1.Введение

2. Первая интерполяционная формула Ньютона

3. Вторая интерполяционная формула Ньютона

Заключение

Список литературы

Введение

Интерполямция, интерполимрование -- в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Многим из тех, кто сталкивается с научными и инженерными расчётами, часто приходится оперировать наборами значений, полученных опытным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию.

Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов».

К классическим работам по интерполяции операторов относятся теорема Рисса -- Торина (Riesz-Thorin theorem) и теорема Марцинкевича (Marcinkiewicz theorem), являющиеся основой для множества других работ.

Рассмотрим систему несовпадающих точек () из некоторой области. Пусть значения функции известны только в этих точках:

Задача интерполяции состоит в поиске такой функции из заданного класса функций, что

Точки называют узлами интерполяции, а их совокупность -- интерполяционной сеткой.

Пары называют точками данных или базовыми точками.

Разность между «соседними» значениями -- шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.

Функцию -- интерполирующей функцией или интерполянтом.

1. Первая интерполяционная формула Ньютона

1. Описание задачи. Пусть для функции заданы значения для равноотстоящих значений независимой переменной: , где - шаг интерполяции . Требуется подобрать полином степени не выше, принимающий в точках значения

Условия (1) эквивалентны тому, что при.

Интерполяционный полином Ньютона имеет вид:

Легко видеть, что полином (2) полностью удовлетворяет требованиям поставленной задачи. Действительно, во-первых, степень полинома не выше, во-вторых,

Заметим, что при формула (2) превращается в ряд Тейлора для функции:

Для практического использования интерполяционную формулу Ньютона (2) обычно записывают в несколько преобразованном виде. Для этого введём новую переменную по формуле; тогда получим:

где представляет собой число шагов , необходимых для достижения точки, исходя из точки. Это и есть окончательный вид интерполяционной формулы Ньютона .

Формулу (3) выгодно использовать для интерполирования функции в окрестности начального значения , где мало по абсолютной величине.

Если дана неограниченная таблица значений функции, то число в интерполяционной формуле (3) может быть любым. Практически в этом случае число выбирают так, чтобы разность была постоянной с заданной степенью точности. За начальное значение можно принимать любое табличное значение аргумента.

Если таблица значений функции конечна, то число ограничено, а именно: не может быть больше числа значений функции, уменьшенного на единицу.

Заметим, что при применении первой интерполяционной формулы Ньютона удобно пользоваться горизонтальной таблицей разностей, так как тогда нужные значения разностей функции находятся в соответствующей горизонтальной строке таблицы.

2. Пример . Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Полученный полином дает возможность прогнозирования. Достаточную точность получаем при решении интерполяционной задачи, например, .Точность падает при решении экстраполяционной задачи, например, .

2. Вторая интерполяционная формула Ньютона

Первая интерполяционная формула Ньютона практически неудобна для интерполирования функции вблизи узлов таблицы. В этом случае обычно применяется .

Описание задачи. Пусть имеем последовательность значений функции

для равноотстоящих значений аргумента, где - шаг интерполяции. Построим полином следующего вида:

или, используя обобщённую степень, получаем:

Тогда, при выполнении равенства, получим

Подставим эти значения в формулу (1). Тогда, окончательно, вторая интерполяционная формула Ньютона имеет вид:

Введём более удобную запись формулы (2). Пусть, тогда

Подставив эти значения в формулу (2), получим:

Это и есть обычный вид второй интерполяционной формулы Ньютона . Для приближённого вычисления значений функции полагают:

Как первая, так и вторая интерполяционные формулы Ньютона могут быть использованы для экстраполирования функции, т. е. для нахождения значений функции для значений аргументов, лежащих вне пределов таблицы.

Если и близко к, то выгодно применять первую интерполяционную формулу Ньютона, причём тогда. Если же и близко к, то удобнее пользоваться второй интерполяционной формулой Ньютона, причём.

Таким образом, первая интерполяционная формула Ньютона обычно используется для интерполирования вперёд и экстраполирования назад , а вторая интерполяционная формула Ньютона, наоборот, - для интерполирования назад и экстраполирования вперёд .

Заметим, что операция экстраполирования, вообще говоря, менее точна, чем операция интерполирования в узком смысле слова.

Пример. Приняв шаг, построить интерполяционный полином Ньютона для функции, заданной таблицей

Заключение

интерполяция ньютон экстраполирование формула

В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций оказывается эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.

Список литературы

1. В.В. Иванов. Методы вычислений на ЭВМ. Справочное пособие. Изд-во "Наукова думка". Киев. 1986.

2. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. Изд-во "Лаборатория базовых знаний". 2003.

3. И.С. Березин, Н.П. Жидков. Методы вычислений. Изд. ФизМатЛит. Москва. 1962.

4. К. Де Бор. Практическое руководство по сплайнам. Изд-во "Радио и связь". Москва. 1985.

5. Дж. Форсайт, М.Мальком, К. Моулер. Машинные методы математических вычислений. Изд-во "Мир". Москва. 1980.

Размещено на Allbest.ru

...

Подобные документы

    Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа , добавлен 14.10.2013

    Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа , добавлен 06.12.2014

    Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.

    презентация , добавлен 18.04.2013

    Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа , добавлен 14.03.2014

    Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций , добавлен 11.02.2012

    Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

    контрольная работа , добавлен 02.06.2011

    В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа , добавлен 05.01.2011

    Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат , добавлен 06.03.2011

    Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

    контрольная работа , добавлен 06.02.2014

    Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.

2. Интерполяция по Ньютону

Дана табличная функция:

i
0
1
2
.. .. ..
n

Точки с координатами называются узловыми точками или узлами.

Количество узлов в табличной функции равно N=n+1.

Необходимо найти значение этой функции в промежуточной точке, например, , причем . Для решения задачи используется интерполяционный многочлен.

Интерполяционный многочлен по формуле Ньютона имеет вид:

где n – степень многочлена,

Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен через значение в одном из узлов и через разделенные разности функции , построенные по узлам .

Сначала приведем необходимые сведения о разделенных разностях.

Пусть в узлах

известны значения функции . Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения

, ,.

Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения

По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:

,

,

Таким образом, разделённая разность -го порядка на участке может быть определена через разделённые разности -го порядка по рекуррентной формуле:

где , , - степень многочлена.

Максимальное значение равно . Тогда и разделенная разность n-го порядка на участке равна

т.е. равна разности разделенных разностей -го порядка, разделенной на длину участка .

Разделенные разности

являются вполне определенными числами, поэтому выражение (1) действительно является алгебраическим многочленом -й степени. При этом в многочлене (1) все разделенные разности определены для участков , .

При вычислении разделенных разностей принято записывать их в виде таблицы

Разделенная разность -го порядка следующим образом выражается через значения функции в узлах:

. (1)

Эту формулу можно доказать методом индукции. Нам потребуется частный случай формулы (1):

Интерполяционным многочленом Ньютона называется многочлен

Рассмотренная форма полинома Ньютона носит название первой интерполяционной формулы Ньютона, и используется, обычно, при интерполировании вначале таблицы.

Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции y i , i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2). Это удобно на практике и ускоряет процесс вычислений.

Программирование функции формулы Ньютона

Для построения многочлена Ньютона по формуле (1) организуем циклический вычислительный процесс по . При этом на каждом шаге поиска находим разделенные разности k-го порядка. Будем помещать разделенные разности на каждом шаге в массив Y.

Тогда рекуррентная формула (3) будет иметь вид:

В формуле Ньютона (2) используются разделенные разности -го порядка, подсчитанные только для участков т.е. разделенные разности -го порядка для . Обозначим эти разделенные разности k-го порядка как . А разделенные разности, подсчитанные для , используются для расчетов разделенных разностей более высоких порядков.

Используя (4), свернем формулу (2). В результате получим

(5)

– значение табличной функции (1) для .

– разделенная разность -го порядка для участка .

Всем привет. Довольно недавно я столкнулся с проблемой на своем новом телефоне, для решения которой мне нужно было достать из прошивки некоторые APK файлы. Поискав в интернете способы решения этой проблемы, я наткнулся на на одну интересную утилиту, которая мне помогла решить эту проблему.

Для работы нам понадобятся: ext4_unpacker_exe.zip ext2explore-2.2.71.zip
Разбираем прошивку Android Распаковываем *.zip архив с прошивкой в любую папку.Запускаем утилиту ext4_unpacker.exe и выбираем файл system.img.

После открытия файла, нажимаем на кнопку сохранить как.

Пишем имя файла с расширением .ext4 (например system.ext4 ).

После завершения распаковки запустите утилиту ext2explore.exe от имени администратора (важно! ).В вкладке File выб…

Программа разделена на два потока в одном из которых выполняется сортировка, а в другом перерисовка графического интерфейса. После нажатия на кнопку «Сортировать», в программе вызывается метод «RunSorting», в котором определяется алгоритм сортировки и создается новый поток с запущенным в нем процессом сортировки.
private void RunSo…

Сегодня я хочу показать свой Качер, который я делал на прошлых зимних каникулах. Описывать весь процесс изготовления не буду, так как в интернете есть много статей. Напишу только об основных его параметрах.

Ниже несколько фото сделанных во время сборки устройства.

Катушка намотана проводом 0,08 мм примерно 2000 витков на ПВХ трубе диаметром 50 мм и высотой 200 мм.

В качестве терминала была использована пластина из старого жесткого диска. Все остальное собиралось по схеме которая находится в самом низу страницы.

Первый вариант питался от блока питания старого компьютера, напряжением 12 В. Затем же был сделан отдельный блок питания, напряжением в 30 В и со встроенным охлаждением.

Схема устройства:

Совместное использование ресурсов (CORS) — это спецификация W3C, которая позволяет осуществлять междоменную связь в браузере. Создавая поверх объекта XMLHttpRequest, CORS позволяет разработчикам работать с одинаковыми идиомами как запросы с одним доменом. Вариант использования для CORS прост. Представьте, что на сайте alice.com есть некоторые данные, которые сайт bob.com хочет получить. Этот тип запроса традиционно не допускается в соответствии с той же политикой происхождения браузера. Однако, поддерживая запросы CORS, alice.com может добавить несколько специальных заголовков ответов, которые позволяют bob.com получать доступ к данным. Как видно из этого примера, поддержка CORS требует координации между сервером и клиентом. К счастью, если вы являетесь разработчиком на стороне клиента, вы защищены от большинства этих деталей. В остальной части этой статьи показано, как клиенты могут выполнять запросы с кросс-началом и как серверы могут настраивать себя для поддержки CORS. Продолжени…