Виды упругих деформаций закон гука. Задачи на тему «Сила упругости. Закон Гука» с решениями. Примеры решения задач

Если на середину доски, лежащей горизонтально на двух опорах поставить груз, то под действием силы тяжести некоторое время груз будет двигаться вниз, прогибая доску, а затем остановится.

Эту остановку можно объяснить тем, что кроме силы тяжести, направленной вниз, на доску подействовала другая сила, направленная вверх. При движении вниз доска деформируется, при этом возникает сила, с которой опора действует на тело, лежащее на ней, эта сила направленна вверх, то есть в сторону, противоположную силе тяжести. Такую силу называют силой упругости . Когда сила упругости становится равной силе тяжести, действующей на тело, опора и тело останавливаются.

Сила упругости — это сила, возникающая при деформации тела (то есть при изменении его формы, размеров) и всегда направлена в сторону, противоположную деформирующей силы.

Причина возникновения силы упругости

Причиной возникновения сил упругости является взаимодействие молекул тела . На малых расстояниях молекулы отталкиваются, а на больших – притягиваются. Конечно речь идёт о расстояниях сравнимых с размерами самих молекул.

В недеформированном теле молекулы находятся на таком расстоянии, при котором силы притяжения и отталкивания уравновешиваются. При деформации тела (при растяжении или сжатии) расстояния между молекулами изменяются – начинают преобладать либо силы притяжения, либо – отталкивания. В результате и возникает сила упругости, которая всегда направлена так, чтобы уменьшить величину деформации тела .

Закон Гука

Если к пружине повесить одну гирьку, то мы увидим, что пружина деформировалась — удлинилась на некоторую величину х . Если к пружине подвесить две одинаковые гирьки, то увидим, что удлинение стало в два раза больше. Удлинение пружины пропорционально силе упругости.

Сила упругости, возникающая при деформации тела, по модулю пропорциональна удлинению тела и направлена так, что стремится уменьшить величину деформации тела.

Закон Гука справедлив только для упругих деформаций, то есть таких видов деформации, которые исчезают, когда деформирующая сила перестаёт действовать!!!

Закон Гука можно записать в виде формулы:

где k — жёсткость пружины;
х — удлинение пружины (равно разнице конечной и начальной длине пружины);
знак «–» показывает, что сила упругости всегда направлена в противоположную сторону деформирующей силы.

«Разновидности» силы упругости

Силу упругости, которая действует со стороны опоры, называют силой нормальной реакции опоры . Нормальная от слова «нормаль», то есть реакция опоры всегда перпендикулярна поверхности.

Силу упругости, которая действует со стороны подвеса, называют силой натяжения нити (подвеса) .

«Физика - 10 класс»

При решении задач по этой теме надо иметь в виду, что закон Гука справедлив только при упругих деформациях тел. Сила упругости не зависит от того, какая происходит деформация: сжатия или растяжения, она одинакова при одинаковых Δl. Кроме этого, считается, что сила упругости вдоль всей пружины одинакова, так как масса пружины обычно не учитывается.


Задача 1.


При помощи пружинного динамометра поднимают с ускорением а = 2,5 м/с 2 , направленным вверх, груз массой m = 2 кг. Определите модуль удлинения пружины динамометра, если её жёсткость k = 1000 Н/м.


Р е ш е н и е.


Согласно закону Гука, выражающему связь между модулем внешней силы , вызывающей растяжение пружины, и её удлинением, имеем F = kΔl. Отсюда

Для нахождения силы воспользуемся вторым законом Ньютона. На груз, кроме силы тяжести m, действует сила упругости пружины, равная по модулю F и направленная вертикально вверх. Согласно второму закону Ньютона m = F + m.

Направим ось OY вертикально вверх так, чтобы пружина была расположена вдоль этой оси (рис. 3.16). В проекции на ось OY второй закон Ньютона можно записать в виде mа у = F y + mg y

Так как а у = a, g y = -g и F y = F, то F = mа + mg = m(а + g).

Следовательно,


Задача 2.


Определите, как изменяется сила натяжения пружины, прикреплённой к бруску массой m = 5 кг, находящемуся неподвижно на наклонной поверхности, при изменении угла наклона от 30° до 60°. Трение не учитывайте.


Р е ш е н и е.


На брусок действуют сила тяжести, сила натяжения пружины и сила реакции опоры (рис. 3.17).

Условие равновесия бруска: m + + yпp = 0.

Запишем это условие в проекциях на оси ОХ и OY:

Из первого уравнения системы получим F yпp = mg sinα.

При изменении угла наклона изменение силы упругости найдём из выражения ΔF yпp = mg(sinα 2 - sinα 1) = 5 10 (0,866 - 0,5) (Н) = 18,3 Н.


Задача 3.


К потолку подвешены последовательно две невесомые пружины жёсткостями 60 Н/м и 40 Н/м. К нижнему концу второй пружины прикреплён груз массой 0,1 кг. Определите жёсткость воображаемой пружины удлинение которой было бы таким же, как и двух пружин при подвешивании к ней такого же груза (эффективную жёсткость).


Р е ш е н и е.


Так как весом пружин можно пренебречь, то очевидно, что силы натяжения пружин равны (рис. 3.18). Тогда согласно закону Гука

F ynp1 = F упр2 ; k 1 x 1 = k 2 х 2 . (1)

На подвешенный груз действуют две силы - сила тяжести и сила натяжения второй пружины.

Условие равновесия груза запишем в виде mg = k 2 х 2 .

Из этого уравнения найдём удлинение

Подставив выражение для х 2 в уравнение (1), получим для удлинения

Определим теперь эффективную жёсткость. Запишем закон Гука для воображаемой пружины:

Подставив в формулу (2) выражения для удлинений x 1 и х 2 пружин, получим

Для эффективной жёсткости получим выражение


Задача 4.


Через блок, закреплённый у края стола, перекинута нерастяжимая нить, к концам которой привязаны брусок массой m 1 = 1 кг, находящийся на горизонтальной поверхности стола, и пружина жёсткостью k = 50 Н/м, расположенная вертикально Ко второму концу пружины привязана гиря массой m 2 = 200 г (рис. 3.19). Определите удлинение пружины при движении тел. Силу трения, массы пружины, блока и нити не учитывайте.


Р е ш е н и е.


На брусок действуют сила тяжести, сила реакции опоры и сила натяжения нити.

И сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал .

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.
Простейшие деформации – деформации растяжения и сжатия.

Закон Гука:

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Коэффициент k – жесткость материала.

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1. Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы .

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

По третьему закону Ньютона:

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в

По своей физической природе силы упругости ближе к силам трения, чем к гравитационным силам, поскольку они в конечном счете обусловлены взаимодействием заряженных частиц, из которых построены все тела. Однако в отличие от сил трения скольжения, возникающих при относительном движении тел, силы упругости определяются только взаимным расположением взаимодействующих тел и возникают только при их деформации.

Виды деформаций. Для твердых тел различают два предельных случая деформации: упругие и пластические. Если после прекращения внешнего воздействия деформированное тело восстанавливает свою форму и размеры, то деформация называется упругой. Для упругой деформации характерно существование однозначной связи между величиной деформации и вызывающей ее силой. Именно это свойство было положено в основу введенного способа измерения сил с помощью динамометра.

Деформации, не исчезающие после прекращения действия сил, называются пластическими.

Закон Гука. Опыт показывает, что почти у всех твердых тел при малых упругих деформациях величина деформации пропорциональна вызывающей ее силе. Это утверждение носит название закона Гука. При больших деформациях связь между деформациями и силами перестает быть линейной, а затем и вообще становится неоднозначной, т. е. деформация зависит от предыстории. Деформация становится пластической. При этом тело остается деформированным хотя бы частично и после прекращения действия внешних сил.

Таким образом, будет ли деформация упругой или пластической, зависит не только от материала тела, но и от того, насколько велики приложенные силы. Упругие деформации используются всюду, начиная от различного типа амортизационных устройств (рессор, пружин и т. д.) и кончая тончайшими измерительными приборами. На пластической деформации основаны различные способы холодной обработки металлов (штамповка, ковка, прокатка и т. д.).

Остановимся подробнее на законе Гука, описывающем малые упругие деформации в рамках феноменологического подхода. Этот закон справедлив для различных видов упругой деформации: растяжения (сжатия), сдвига, кручения, изгиба.

Деформация растяжения (сжатия) стержня характеризуется абсолютным удлинением , где - длина стержня в недеформированном состоянии, и относительным удлинением Опыт показывает, что удлинение стержня пропорционально вызывающей его силе

Коэффициент пропорциональности к в этой формуле называют жесткостью стержня. Он зависит как от упругих свойств материала, так и от размеров деформируемого стержня.

Модуль Юнга. Для любых упругих деформаций можно ввести постоянные, характеризующие упругие свойства только материала, не зависящие от размеров тела. Для изотропного тела существуют две независимые характеристики упругих свойств - модуль Юнга и коэффициент Пуассона. Введем их на примере деформации растяжения.

Рассмотрим однородную деформацию, возникающую в стержне с одинаковым по всей длине поперечным сечением под действием приложенной к его концу силы Удлинение как показывает опыт, пропорционально его первоначальной длине Поэтому относительное удлинение уже не зависит от длины стержня. Но эта величина еще зависит от поперечного сечения стержня. Опыт показывает, что удлинение под действием заданной силы обратно пропорционально площади поперечного сечения стержня. Поэтому если вместо силы ввести механическое напряжение то при заданном напряжении относительное удлинение уже не зависит от поперечного сечения, т. е. определяется только упругими свойствами материала:

Величина Е называется модулем Юнга материала. Из формулы (2) видно, что модуль Юнга равен тому механическому напряжению, при котором относительное удлинение равно единице, если, конечно, считать, что при таких напряжениях деформация остается упругой. В рамках используемого феноменологического подхода значение модуля Юнга определяется на опыте. Например, для стали Такое напряжение превышает не только предел упругости, когда деформация перестает быть упругой, но и предел прочности, когда происходит разрушение деформируемого тела.

Задача

Жесткость стержня. Выразите жесткость к упругого стержня через его размеры и модуль Юнга материала.

Решение. Для получения ответа достаточно сопоставить формулу (1), определяющую жесткость стержня к, и формулу (2), выражающую относительное удлинение стержня через механическое напряжение и модуль Юнга Е. В результате получим

Жесткость стержня пропорциональна площади поперечного сечения, не зависит от формы этого сечения и обратно пропорциональна длине стержня.

Коэффициент Пуассона. Опыт показывает, что при растяжении стержня уменьшаются его поперечные размеры. Это уменьшение можно характеризовать относительным поперечным сжатием , где - поперечный линейный размер стержня (диаметр, толщина и т. п.). Отношение относительного поперечного сжатия стержня к его относительному удлинению при упругой деформации не зависит как от приложенного напряжения, так и от размеров стержня. Оно называется коэффициентом Пуассона. Для многих веществ значение этой безразмерной величины близко к 0,3.

Всестороннее сжатие. При всестороннем (гидростатическом) сжатии тела относительное уменьшение его объема пропорционально вызывающему это сжатие изотропному давлению

где не зависящий от размеров и формы тела коэффициент к называется модулем всестороннего сжатия. Он связан с модулем Юнга и коэффициентом Пуассона для данного материала соотношением

Задача для самостоятельного решения

Докажите формулу (4), рассматривая малое всестороннее сжатие кубика как суперпозицию одинаковых деформаций одностороннего сжатия по трем взаимно перпендикулярным направлениям.

Рис. 101. Изгиб балки, лежащей на двух опорах

Неоднородная деформация. Аналогично деформации растяжения могут быть рассмотрены и малые упругие деформации других видов. Например, при деформации изгиба балки, лежащей на двух опорах, ее прогиб пропорционален приложенной силе (рис. 101). Коэффициент пропорциональности выражается через модуль Юнга материала балки, поскольку при изгибе нижняя сторона балки испытывает деформацию растяжения, а верхняя - сжатия. Эта деформация неоднородная, так как разные части балки деформированы в разной степени. Элементы, расположенные вдоль штриховой линии (рис. 101), практически совсем не

деформированы. Благодаря этому обстоятельству коэффициент пропорциональности между прогибом и силой зависит не только от размеров балки, но и от формы ее поперечного сечения. Жесткость двутавровой балки на изгиб оказывается почти такой же, как и у бруска таких же габаритов, хотя масса ее значительно меньше. Такой же принцип использован природой при выборе трубчатого строения костей позвоночных.

Проявления упругих сил. Силы упругости фигурировали в роли сил реакции опоры во всех рассмотренных выше примерах движения при наличии связей. При этом всегда использовалась идеализированная модель упругих тел, в которой жесткость считалась очень большой (строго говоря, бесконечно большой): несмотря на наличие упругих сил реакции, деформация тел считалась настолько малой, что ею можно было пренебречь.

Силы упругости играют важную роль в вопросах механического равновесия, когда в реальных условиях модель недеформируемого твердого тела оказывается недостаточной. Замечательная особенность упругих сил заключается также в том, что они служат наиболее распространенной причиной возникновения механических колебаний. Дело в том, что при упругой деформации возникающие силы всегда стремятся вернуть тело в положение равновесия. Если тело выведено из равновесия и предоставлено самому себе, под действием упругих сил возникает его движение к положению равновесия. Благодаря инерции тело проскакивает это положение, возникает деформация противоположного знака, и весь процесс повторяется.

Объясните, почему жесткость двутавровой балки на изгиб почти такая же, как у бруска тех же габаритов из такого же материала.

Какой вид деформации имеет место в материале проволоки, из которой навита пружина школьного динамометра?


Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими , а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими . Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба , кручения и сдвига .

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид:

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.


Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х > 0: В этой точке пружина действует на тело М упругой силой

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х

Из рисунка видно, что проекция силы упругости пружины на ось Ах всегда имеет знак, противоположный знаку координаты х, так как сила упругости направлена всегда к положению равновесия С. На рис. 20, б изображен график закона Гука. На оси абсцисс откладывают значения удлинения х пружины, а на оси ординат - значения силы упругости. Зависимость fх от х линейная, поэтому график представляет собой прямую, проходящую через начало координат.

Рассмотрим еще один опыт .

Пусть один конец тонкой стальной проволоки закреплен на кронштейне, а к другому концу подвешен груз, вес которого является внешней растягивающей силой F, действующей на проволоку перпендикулярно ее поперечному сечению (рис. 21).

Действие этой силы на проволоку зависит не только от модуля силы F, но и от площади поперечного сечения проволоки S.

Под действием приложенной к ней внешней силы проволока деформируется, растягивается. При не слишком большом растяжении эта деформация является упругой. В упруго деформированной проволоке возникает сила упругости f уп. Согласно третьему закону Ньютона, сила упругости равна по модулю и противоположна по направлению внешней силе, действующей на тело, т. е.

f уп = -F (2.10)

Состояние упруго деформированного тела характеризуют величиной s, называемой нормальным механическим напряжением (или, для краткости, просто нормальным напряжением ). Нормальное напряжение s равно отношению модуля силы упругости к площади поперечного сечения тела:

s = f уп /S (2.11)

Пусть первоначальная длина нерастянутой проволоки составляла L 0 . После приложения силы F проволока растянулась и ее длина стала равной L. Величину DL = L - L 0 называют абсолютным удлинением проволоки . Величину e = DL/L 0 (2.12) называют относительным удлинением тела . Для деформации растяжения e>0, для деформации сжатия e < 0.

Наблюдения показывают, что при небольших деформациях нормальное напряжение s пропорционально относительному удлинению e:

s = E|e|. (2.13)

Формула (2.13) является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным. Коэффициент пропорциональности Е в законе Гука называется модулем продольной упругости (модулем Юнга).

Установим физический смысл модуля Юнга . Как видно из формулы (2.12), e = 1 и L = 2L 0 при DL = L 0 . Из формулы (2.13) следует, что в этом случае s = Е. Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза. (если бы для такой большой деформации выполнялся закон Гука). Из формулы (2.13) видно также, что в СИ модуль Юнга выражают в паскалях (1 Па = 1 Н/м 2).