Ядерная бомба из чего состоит. Атомное оружие. Самая мощная бомба в мире

Как известно, к ядерному оружию первого поколения , его нередко называют АТОМНЫМ, относят боевые заряды, основанные на использовании энергии деления ядер урана-235 или плутония-239. Первое в истории испытание такого зарядного устройства мощностью 15 кт было проведено в США 16 июля 1945 года на полигоне Аламогордо.

Взрыв в августе 1949 года первой советской атомной бомбы придал новый импульс в развертывании работ по созданию ядерного оружия второго поколения . В его основе лежит технология использования энергии термоядерных реакций синтеза ядер тяжелых изотопов водорода — дейтерия и трития. Такое оружие называют ТЕРМОЯДЕРНЫМ или водородным. Первое испытание термоядерного устройства «Майк» было проведено Соединенными Штатами 1 ноября 1952 года на острове Элугелаб (Маршалловы острова), мощность которого составила 5-8 миллионов тонн. В следующем году термоядерный заряд был взорван в СССР.

Осуществление атомных и термоядерных реакций открыло широкие возможности для их использования при создании серии различных боеприпасов последующих поколений. К ядерному оружию третьего поколения относят специальные заряды (боеприпасы), у которых за счет особой конструкции добиваются перераспределения энергии взрыва в пользу одного из поражающих факторов. Другие варианты зарядов такого оружия обеспечивают создание фокусировки того или иного поражающего фактора в определенном направлении, что также приводит к значительному усилению его поражающего действия.

Анализ истории создания и совершенствования ядерного оружия свидетельствует о том, что США неизменно лидировали в создании новых его образцов. Однако проходило некоторое время и СССР ликвидировал эти односторонние преимущества США. Не является исключением в этом отношении и ядерное оружие третьего поколения. Одним из наиболее известных образцов ядерного оружия третьего поколения является НЕЙТРОННОЕ оружие.

Что представляет собой нейтронное оружие?

О нейтронном оружии широко заговорили на рубеже 60-х годов. Однако впоследствии стало известно, что возможность его создания обсуждалась еще задолго до этого. Бывший президент Всемирной федерации научных работников профессор из Великобритании Э.Буроп вспоминал, что впервые он услышал об этом еще в 1944 году, когда в составе группы английских ученых работал в США над «Манхэттенским проектом». Работа над созданием нейтронного оружия была инициирована необходимостью получения мощного боевого средства, обладающего избирательной способностью поражения, для использования непосредственно на поле боя.

Первый взрыв нейтронного зарядного устройства (кодовый номер W-63) был произведен в подземной штольне Невады в апреле 1963 года . Полученный при испытании поток нейтронов оказался значительно ниже расчетной величины, что существенно снижало боевые возможности нового оружия. Потребовалось еще почти 15 лет для того, чтобы нейтронные заряды приобрели все качества боевого оружия. По мнению профессора Э.Буропа, принципиальное отличие устройства нейтронного заряда от термоядерного заключается в различной скорости выделения энергии: «В нейтронной бомбе выделение энергии происходит гораздо медленнее. Это нечто вроде пиропатрона замедленного действия «.

За счет этого замедления и уменьшается энергия, идущая на образование ударной волны и светового излучения и, соответственно, возрастает ее выделение в виде потока нейтронов. В ходе дальнейших работ были достигнуты определенные успехи в обеспечении фокусировки нейтронного излучения, что позволяло не только обеспечивать усиление его поражающего действия в определенном направлении, но и снизить опасность при его применении для своих войск.

В ноябре 1976 года в Неваде были проведены очередные испытания нейтронного боезаряда, в ходе которых были получены весьма впечатляющие результаты . В результате этого в конце 1976 года было принято решение о производстве компонентов нейтронных снарядов 203-мм калибра и боеголовок к ракете «Ланс». Позднее, в августе 1981 года на заседании Группы ядерного планирования Совета национальной безопасности США было принято решение о полномасштабном производстве нейтронного оружия: 2000 снарядов к 203-мм гаубице и 800 боеголовок к ракете «Ланс».

При взрыве нейтронной боеголовки основное поражение живым организмам наносится потоком быстрых нейтронов . По расчетам, на каждую килотонну мощности заряда выделяется около 10 нейтронов, которые с огромной скоростью распространяются в окружающем пространстве. Эти нейтроны обладают чрезвычайно высоким поражающим действием на живые организмы, гораздо сильнее, чем даже Y-излучение и ударная волна . Для сравнения укажем, что при взрыве обычного ядерного заряда мощностью 1 килотонна открыто расположенная живая сила будет уничтожена ударной волной на расстоянии 500-600 м. При взрыве нейтронной боеголовки той же мощности уничтожение живой силы будет происходить на расстоянии примерно в три раза большем.

Образующиеся при взрыве нейтроны движутся со скоростями несколько десятков километров в секунду. Врываясь словно снаряды в живые клетки организма, они выбивают ядра из атомов, рвут молекулярные связи, образуют свободные радикалы, обладающие высокой реакционной способностью, что приводит к нарушению основных циклов жизненных процессов.

При движении нейтронов в воздухе в результате столкновений с ядрами атомов газов они постепенно теряют энергию. Это приводит к тому, что на расстоянии около 2 км их поражающее действие практически прекращается . Для того чтобы снизить разрушительное действие сопутствующей ударной волны мощность нейтронного заряда выбирают в пределах от 1 до 10 кт, а высоту взрыва над землей — порядка 150-200 метров.

По свидетельству некоторых американских ученых, в Лос-Аламосской и Сандийской лабораториях США и во Всероссийском институте экспериментальной физики в Сарове (Арзамас-16) проводятся термоядерные эксперименты, в которых наряду с исследованиями по получению электрической энергии изучается возможность получения чисто термоядерной взрывчатки. Наиболее вероятным побочным результатом проводимых исследований, по их мнению, может стать улучшение энергомассовых характеристик ядерных боезарядов и создание нейтронной мини-бомбы. По оценкам экспертов, такой нейтронный боезаряд с тротиловым эквивалентом всего в одну тонну может создать смертельную дозу излучения на расстояниях 200-400 м .

Нейтронное оружие является мощным оборонительным средством и его наиболее эффективное применение возможно при отражении агрессии, особенно в том случае, когда противник вторгся на защищаемую территорию. Нейтронные боеприпасы являются тактическим оружием и их применение наиболее вероятно в так называемых «ограниченных» войнах, в первую очередь в Европе . Это оружие может приобрести особое значение для России, поскольку в условиях ослабления ее вооруженных сил и возрастания угрозы региональных конфликтов она будет вынуждена делать больший упор в обеспечении своей безопасности на ядерное оружие.

Применение нейтронного оружия может быть особенно эффективным при отражении массированной танковой атаки . Известно, что танковая броня на определенных расстояниях от эпицентра взрыва (более 300-400 м при взрыве ядерного заряда мощностью 1 кт) обеспечивает защиту экипажей от ударной волны и Y-излучения. В то же время быстрые нейтроны проникают через стальную броню без существенного ослабления.

Проведенные расчеты показывают, что при взрыве нейтронного заряда мощностью 1 килотонна экипажи танков будут мгновенно выведены из строя в радиусе 300 м от эпицентра и погибнут в течение двух суток. Экипажи, находящиеся на расстоянии 300-700 м, выйдут из строя через несколько минут и в течение 6-7 дней также погибнут; на расстояниях 700-1300 м они окажутся небоеспособными через несколько часов, а гибель большинства из них растянется в течение нескольких недель. На расстояниях 1300-1500 м определенная часть экипажей получит серьезные заболевания и постепенно выйдет из строя.

Нейтронные боезаряды могут быть также использованы в системах ПРО для борьбы с боеголовками атакующих ракет на траектории . По расчетам специалистов, быстрые нейтроны, обладая высокой проникающей способностью, пройдут через обшивку боеголовок противника, вызовут поражение их электронной аппаратуры. Кроме того, нейтроны, взаимодействуя с ядрами урана или плутония атомного детонатора боеголовки, вызовут их деление.

Такая реакция будет происходить с большим выделением энергии, что, в конечном счете, может привести к нагреванию и разрушению детонатора. Это, в свою очередь, приведет к выходу из строя всего заряда боеголовки. Это свойство нейтронного оружия было использовано в системах противоракетной обороны США. Еще в середине 70-х годов нейтронные боеголовки были установлены на ракетах-перехватчиках «Спринт» системы «Сейфгард», развернутой вокруг авиабазы «Гранд Форкс» (штат Северная Дакота). Не исключено, что в будущей системе национальной ПРО США будут также использованы нейтронные боезаряды.

Как известно, в соответствии с обязательствами, объявленными президентами США и России в сентябре-октябре 1991 г., все ядерные артснаряды и боеголовки тактических ракет наземного базирования должны быть ликвидированы . Однако не вызывает сомнений, что в случае изменения военно-политической ситуации и принятия политического решения отработанная технология нейтронных боезарядов позволяет наладить их массовое производство в короткое время.

«Супер-ЭМИ»

Вскоре после окончания Второй мировой войны, в условиях монополии на ядерное оружие, Соединенные Штаты возобновили испытания с целью его совершенствования и определения поражающих факторов ядерного взрыва. В конце июня 1946 года в районе атолла Бикини (Маршалловы острова) под шифром «Операция Кроссроудс» были проведены ядерные взрывы, в ходе которых исследовалось поражающее действие атомного оружия.

В ходе этих испытательных взрывов было обнаружено новое физическое явление образование мощного импульса электромагнитного излучения (ЭМИ) , к которому сразу же был проявлен большой интерес. Особенно значительным оказался ЭМИ при высоких взрывах. Летом 1958 года были произведены ядерные взрывы на больших высотах. Первую серию под шифром «Хардтэк» провели над Тихим океаном вблизи острова Джонстон. В ходе испытаний были взорваны два заряда мегатонного класса: «Тэк» — на высоте 77 километров и «Ориндж» — на высоте 43 километра.

В 1962 году были продолжены высотные взрывы: на высоте 450 км под шифром «Старфиш» был произведен взрыв боеголовки мощностью 1,4 мегатонны. Советский Союз также в течение 1961-1962 гг. провел серию испытаний, в ходе которых исследовалось воздействие высотных взрывов (180-300 км) на функционирование аппаратуры систем ПРО.
При проведении этих испытаний были зафиксированы мощные электромагнитные импульсы, которые обладали большим поражающим действием на электронную аппаратуру, линии связи и электроснабжения, радио- и радиолокационные станции на больших расстояниях. С тех пор военные специалисты продолжали уделять большое внимание исследованию природы этого явления, его поражающего действия, способов защиты от него своих боевых и обеспечивающих систем.

Физическая природа ЭМИ определяется взаимодействием Y-квантов мгновенного излучения ядерного взрыва с атомами газов воздуха : Y-кванты выбивают из атомов электроны (так называемые комптоновские электроны), которые движутся с огромной скоростью в направлении от центра взрыва. Поток этих электронов, взаимодействуя с магнитным полем Земли, создает импульс электромагнитного излучения. При взрыве заряда мегатонного класса на высотах несколько десятков километров напряженность электрического поля на поверхности земли может достигать десятков киловольт на метр .

На основе полученных в ходе испытаний результатов военные специалисты США развернули в начале 80-х годов исследования, направленные на создание еще одного вида ядерного оружия третьего поколения — Супер-ЭМИ с усиленным выходом электромагнитного излучения.

Для увеличения выхода Y-квантов предполагалось создать вокруг заряда оболочку из вещества, ядра которого, активно взаимодействуя с нейтронами ядерного взрыва, испускают Y-излучение высоких энергий. Специалисты считают, что с помощью Супер-ЭМИ возможно создать напряженность поля у поверхности Земли порядка сотен и даже тысяч киловольт на метр .

По расчетам американских теоретиков, взрыв такого заряда мощностью 10 мегатонн на высоте 300-400 км над географическим центром США — штатом Небраска приведет к нарушению работы радиоэлектронных средств почти на всей территории страны в течение времени, достаточном для срыва ответного ракетно-ядерного удара.

Дальнейшее направление работ по созданию Супер-ЭМИ было связано с усилением его поражающего действия за счет фокусировки Y-излучения, что должно было привести к увеличению амплитуды импульса. Эти свойства Супер-ЭМИ делают его оружием первого удара, предназначенном для выведения из строя системы государственного и военного управления, МБР, особенно мобильного базирования, ракет на траектории, радиолокационных станций, космических аппаратов, систем энергоснабжения и т.п. Таким образом, Супер-ЭМИ имеет явно наступательный характер и является дестабилизирующим оружием первого удара .

Проникающие боеголовки — пенетраторы

Поиски надежных средств уничтожения высокозащищенных целей привели военных специалистов США к идее использования для этого энергии подземных ядерных взрывов. При заглублении ядерных зарядов в грунт значительно возрастает доля энергии, идущей на образование воронки, зоны разрушения и сейсмических ударных волн. В этом случае при существующей точности МБР и БРПЛ значительно повышается надежность уничтожения «точечных», особо прочных целей на территории противника.

Работа над созданием пенетраторов была начата по заказу Пентагона еще в середине 70-х годов, когда концепции «контрсилового» удара придавалось приоритетное значение. Первый образец проникающей боеголовки был разработан в начале 80-х годов для ракеты средней дальности «Першинг-2» . После подписания Договора по ракетам средней и меньшей дальности (РСМД) усилия специалистов США были перенацелены на создание таких боеприпасов для МБР.

Разработчики новой боеголовки встретились со значительными трудностями, связанными, прежде всего, с необходимостью обеспечить ее целостность и работоспособность при движении в грунте. Огромные перегрузки, действующие на боезаряд (5000-8000 g, g-ускорение силы тяжести) предъявляют чрезвычайно жесткие требования к конструкции боеприпаса.

Поражающее действие такой боеголовки на заглубленные, особо прочные цели определяется двумя факторами — мощностью ядерного заряда и величиной его заглубления в грунт . При этом для каждого значения мощности заряда существует оптимальная величина заглубления, при которой обеспечивается наибольшая эффективность действия пенетратора.

Так, например, разрушающее действие на особо прочные цели ядерного заряда мощностью 200 килотонн будет достаточно эффективным при его заглублении на глубину 15-20 метров и оно будет эквивалентным воздействию наземного взрыва боеголовки ракеты МХ мощностью 600 кт. Военные специалисты определили, что при точности доставки боеголовки-пенетратора, характерной для ракет МХ и «Трайдент-2», вероятность уничтожения ракетной шахты или командного пункта противника одним боезарядом, весьма высока. Это означает, что в этом случае вероятность разрушения целей будет определяться лишь технической надежностью доставки боеголовок.

Очевидно, что проникающие боеголовки предназначены для уничтожения центров государственного и военного управления противника, МБР, находящихся в шахтах, командных пунктов и т.п. Следовательно, пенетраторы являются наступательным, «контрсиловым» оружием, предназначенным для нанесения первого удара и в силу этого имеют дестабилизирующий характер .

Значение проникающих боеголовок, в случае принятия их на вооружение, может значительно возрасти в условиях сокращения стратегических наступательных вооружений, когда снижение боевых возможностей по нанесению первого удара (уменьшение количества носителей и боеголовок) потребует повышения вероятности поражения целей каждым боеприпасом. В то же время для таких боеголовок необходимо обеспечивать достаточно высокую точность попадания в цель. Поэтому рассматривалась возможность создания боеголовок-пенетраторов, оснащенных системой самонаведения на конечном участке траектории, подобно высокоточному оружию.

Рентгеновский лазер с ядерной накачкой

Во второй половине 70-х годов в Ливерморской радиационной лаборатории были начаты исследования по созданию «противоракетного оружия XXI века» — рентгеновского лазера с ядерным возбуждением . Это оружие с самого начала замышлялось в качестве основного средства уничтожения советских ракет на активном участке траектории, до разделения боеголовок. Новому оружию присвоили наименование — «оружие залпового огня».

В схематическом виде новое оружие можно представить в виде боеголовки, на поверхности которой укрепляется до 50 лазерных стержней. Каждый стержень имеет две степени свободы и подобно орудийному стволу может быть автономно направлен в любую точку пространства. Вдоль оси каждого стержня, длиной несколько метров, размещается тонкая проволока из плотного активного материала, «такого как золото». Внутри боеголовки размещается мощный ядерный заряд, взрыв которого должен выполнять роль источника энергии для накачки лазеров.

По оценкам некоторых специалистов, для обеспечения поражения атакующих ракет на дальности более 1000 км потребуется заряд мощностью несколько сотен килотонн . Внутри боеголовки также размещается система прицеливания с быстродействующим компьютером, работающим в реальном масштабе времени.

Для борьбы с советскими ракетами военными специалистами США была разработана особая тактика его боевого использования. С этой целью ядерно-лазерные боеголовки предлагалось разместить на баллистических ракетах подводных лодок (БРПЛ). В «кризисной ситуации» или в период подготовки к нанесению первого удара подлодки, оснащенные этими БРПЛ, должны скрытно выдвинуться в районы патрулирования и занять боевые позиции как можно ближе к позиционным районам советских МБР: в северной части Индийского океана, в Аравийском, Норвежском, Охотском морях.

При поступлении сигнала о старте советских ракет производится пуск ракет подводных лодок. Если советские ракеты поднялись на высоту 200 км, то для того, чтобы выйти на дальность прямой видимости, ракетам с лазерными боеголовками необходимо подняться на высоту около 950 км. После этого система управления совместно с компьютером производит наведение лазерных стержней на советские ракеты. Как только каждый стержень займет положение, при котором излучение будет попадать точно в цель, компьютер подаст команду на подрыв ядерного заряда.

Огромная энергия, выделяющаяся при взрыве в виде излучений, мгновенно переведёт активное вещество стержней (проволоку) в плазменное состояние . Через мгновение эта плазма, охлаждаясь, создаст излучение в рентгеновском диапазоне, распространяющееся в безвоздушном пространстве на тысячи километров в направлении оси стержня. Сама лазерная боеголовка через несколько микросекунд будет разрушена, но до этого она успеет послать мощные импульсы излучения в сторону целей.

Поглощаясь в тонком поверхностном слое материала ракеты, рентгеновское излучение может создать в нем чрезвычайно высокую концентрацию тепловой энергии, что вызовет его взрывообразное испарение, приводящее к образованию ударной волны и, в конечном счете, к разрушению корпуса.

Однако создание рентгеновского лазера, который считался краеугольным камнем рейгановской программы СОИ, встретилось с большими трудностями, которые пока не удалось преодолеть . Среди них на первых местах стоят сложности фокусировки лазерного излучения, а также создание эффективной системы наведения лазерных стержней.

Первые подземные испытания рентгеновского лазера были проведены в штольнях Невады в ноябре 1980 года под кодовым названием «Дофин». Полученные результаты подтвердили теоретические выкладки ученых, однако, выход рентгеновского излучения оказался весьма слабым и явно недостаточным для уничтожения ракет. После этого последовала серия испытательных взрывов «Экскалибур», «Супер-Экскалибур», «Коттедж», «Романо», в ходе которых специалисты преследовали главную цель — повысить интенсивность рентгеновского излучения за счет фокусировки.

В конце декабря 1985 года был произведен подземный взрыв «Голдстоун» мощностью около 150 кт, а в апреле следующего года — испытание «Майти Оук» с аналогичными целями. В условиях запрета на ядерные испытания на пути создания этого оружия возникли серьезные препятствия.

Необходимо подчеркнуть, что рентгеновский лазер является, прежде всего, ядерным оружием и, если его взорвать вблизи поверхности Земли, то он будет обладать примерно таким же поражающим действием, что и обычный термоядерный заряд такой же мощности.

«Гиперзвуковая шрапнель»

В ходе работ по программе СОИ, теоретические расчеты и результаты моделирования процесса перехвата боеголовок противника показали, что первый эшелон ПРО, предназначенный для уничтожения ракет на активном участке траектории, полностью решить эту задачу не сможет. Поэтому необходимо создать боевые средства, способные эффективно уничтожать боеголовки в фазе их свободного полета.

С этой целью специалисты США предложили использовать мелкие металлические частицы, разогнанные до высоких скоростей с помощью энергии ядерного взрыва . Основная идея такого оружия состоит в том, что при высоких скоростях даже маленькая плотная частица (массой не более грамма) будет обладать большой кинетической энергией. Поэтому при соударении с целью частица может повредить или даже пробить оболочку боеголовки. Даже в том случае, если оболочка будет только повреждена, то при входе в плотные слои атмосферы она будет разрушена в результате интенсивного механического воздействия и аэродинамического нагрева.

Естественно, при попадании такой частицы в тонкостенную надувную ложную цель, ее оболочка будет пробита и она в вакууме сразу же потеряет свою форму. Уничтожение легких ложных целей значительно облегчит селекцию ядерных боеголовок и, тем самым, будет способствовать успешной борьбе с ними.

Предполагается, что конструктивно такая боеголовка будет содержать ядерный заряд сравнительно небольшой мощности с автоматической системой подрыва, вокруг которого создается оболочка, состоящая из множества мелких металлических поражающих элементов. При массе оболочки 100 кг можно получить более 100 тысяч осколочных элементов , что позволит создать сравнительно большое и плотное поле поражения. В ходе взрыва ядерного заряда образуется раскаленный газ — плазма, который, разлетаясь с огромной скоростью, увлекает за собой и разгоняет эти плотные частицы. Сложной технической задачей при этом является сохранение достаточной массы осколков, поскольку при их обтекании высокоскоростным потоком газа будет происходить унос массы с поверхности элементов.

В США была проведена серия испытаний по созданию «ядерной шрапнели» по программе «Прометей». Мощность ядерного заряда в ходе этих испытаний составляла всего несколько десятков тонн. Оценивая поражающие возможности этого оружия, следует иметь в виду, что в плотных слоях атмосферы частицы, движущиеся со скоростями более 4-5 километров в секунду, будут сгорать. Поэтому «ядерную шрапнель» можно применять только в космосе, на высотах более 80-100 км, в условиях безвоздушного пространства .

Соответственно этому, шрапнельные боеголовки могут с успехом применяться, помимо борьбы с боеголовками и ложными целями, также в качестве противокосмического оружия для уничтожения спутников военного назначения, в частности, входящих в систему предупреждения о ракетном нападении (СПРН). Поэтому возможно его боевое использование в первом ударе для «ослепления» противника.

Рассмотренные выше различные виды ядерного оружия отнюдь не исчерпывают всех возможностей в создании его модификаций. Это, в частности, касается проектов ядерного оружия с усиленным действием воздушной ядерной волны, повышенным выходом Y-излучения, усилением радиоактивного заражения местности (типа пресловутой «кобальтовой» бомбы) и др.

В последнее время в США рассматриваются проекты ядерных зарядов сверхмалой мощности :
— мини-ньюкс (мощность сотни тонн),
— микро-ньюкс (десятки тонн),
— тайни-ньюкс (единицы тонн), которые кроме малой мощности, должны быть значительно более «чистыми», чем их предшественники.

Процесс совершенствования ядерного оружия продолжается и нельзя исключить появления в будущем сверхминиатюрных ядерных зарядов, созданных на основе использования сверхтяжелых трансплутониевых элементов с критической массой от 25 до 500 граммов. У трансплутониевого элемента курчатовия величина критической массы составляет около 150 граммов.

Ядерное устройство при использовании одного из изотопов калифорния будет иметь настолько малые размеры, что, обладая мощностью в несколько тонн тротила, может быть приспособлено для стрельбы из гранатометов и стрелкового оружия.

Все вышесказанное свидетельствует о том, что использование ядерной энергии в военных целях обладает значительными потенциальными возможностями и продолжение разработок в направлении создания новых образцов оружия может привести к «технологическому прорыву», который снизит «ядерный порог», окажет отрицательное влияние на стратегическую стабильность.

Запрещение всех ядерных испытаний если и не перекрывает полностью пути развития и совершенствования ядерного оружия, то значительно тормозит их. В этих условиях особое значение приобретает взаимная открытость, доверительность, ликвидация острых противоречий между государствами и создание, в конечном счете, эффективной международной системы коллективной безопасности.

/Владимир Белоус, генерал-майор, профессор Академии военных наук, nasledie.ru /

После окончания Второй Мировой войны страны антигитлеровской коалиции стремительными темпами пытались опередить друг друга в разработках более мощной ядерной бомбы.

Первое испытание, проведённое американцами на реальных объектах в Японии, до предела накалило обстановку между СССРи США. Мощные взрывы, прогремевшие в японских городах и практически уничтожившие всё живое в них, заставили Сталина отказаться от множества притязаний на мировой арене. Большинство советских учёных-физиков было в срочном порядке «брошены» на разработку ядерного оружия.

Когда и как появилось ядерное оружие

Годом рождения атомной бомбы можно считать 1896 год. Именно тогда учёный-химик из Франции А. Беккерель открыл, что уран радиоактивен. Цепная реакция урана образует мощную энергию, которая служит основой для страшного взрыва. Вряд ли Беккерель предполагал, что его открытие приведёт к созданию ядерного оружия — самого страшного оружия во всём мире.

Конец 19 — начало 20 века стал переломным моментом в истории изобретения ядерного оружия. Именно в этом временном промежутке учёные различных стран мира смогли открыть следующие законы, лучи и элементы:

  • Альфа, гамма и бета лучи;
  • Было открыто множество изотопов химических элементов, обладающих радиоактивными свойствами;
  • Был открыт закон радиоактивного распада, который определяет временную и количественную зависимость интенсивности радиоактивного распада, зависящую от количества радиоактивных атомов в испытуемом образце;
  • Зародилась ядерная изометрия.

В 1930-х годах впервые смогли расщепить атомное ядро урана с поглощением нейтронов. В это же время были открыты позитроны и нейроны. Всё это дало мощный толчок к разработкам оружия, которое использовало атомную энергию. В 1939 году была запатентована первая в мире конструкция атомной бомбы. Это сделал физик из Франции Фредерик Жолио-Кюри.

В результате дальнейших исследований и разработок в данной сфере, на свет появилась ядерная бомба. Мощность и радиус поражения современных атомных бомб настолько велик, что страна, которая обладает ядерным потенциалом, практически не нуждается в мощной армии, так как одна атомная бомба способна уничтожить целое государство.

Как устроена атомная бомба

Атомная бомба состоит из множества элементов, главными из которых являются:

  • Корпус атомной бомбы;
  • Система автоматики, контролирующая процесс взрыва;
  • Ядерного заряда или боеголовки.

Система автоматики находится в корпусе атомной бомбы, вместе с ядерным зарядом. Конструкция корпуса должна быть достаточно надёжной, чтобы уберечь боеголовку от различных внешних факторов и воздействий. Например, различного механического, температурного или подобного влияния, которое может привести к незапланированному взрыву огромной мощности, способному уничтожить всё вокруг.

В задачу автоматики входит полный контроль над тем, чтобы взрыв произошёл в нужное время, поэтому система состоит из следующих элементов:

  • Устройство, отвечающее за аварийный подрыв;
  • Источник питания системы автоматики;
  • Система датчиков подрыва;
  • Устройство взведения;
  • Устройство предохранения.

Когда проводились первые испытания, ядерные бомбы доставлялись на самолётах, которые успевали покинуть зону поражения. Современные атомные бомбы обладают такой мощностью, что их доставка может осуществляться только с помощью крылатых, баллистических или хотя бы зенитных ракет.

В атомных бомбах применяются различные системы детонирования. Самая простейшая из них – это обычное устройство, которое срабатывает при попадании снаряда в цель.

Одной из основных характеристик ядерных бомб и ракет, является разделение их на калибры, которые бывают трёх типов:

  • Малый, мощность атомных бомб данного калибра эквивалентна нескольким тысячам тонн тротила;
  • Средний (мощность взрыва – несколько десятков тысяч тонн тротила);
  • Крупный, мощность заряда которого измеряется миллионами тонн тротила.

Интересно, что чаще всего мощность всех ядерных бомб измеряется именно в тротиловом эквиваленте, так как для атомного оружие не существует своей шкалы измерения мощности взрыва.

Алгоритмы действия ядерных бомб

Любая атомная бомба действует по принципу использования ядерной энергии, которая выделяется в ходе ядерной реакции. В основе данной процедуры лежит или деление тяжёлых ядер или синтез лёгких. Так как в ходе данной реакции выделяется огромное количество энергии, причём в кратчайшее время, радиус поражения ядерной бомбы очень впечатляет. Из-за этой особенности ядерное оружие относят к классу оружия массового поражения.

В ходе процесса, который запускается при взрыве атомной бомбы, имеются два главных момента:

  • Это непосредственный центр взрыва, где проходит ядерная реакция;
  • Эпицентр взрыва, который находится на месте, где взорвалась бомба.

Ядерная энергия, выделяемая при взрыве атомной бомбы, настолько сильна, что на земле начинаются сейсмические толчки. При этом непосредственные разрушения данные толчки приносят лишь на расстоянии нескольких сотен метров (хотя если учитывать силу взрыва самой бомбы, данные толчки уже ни на что не влияют).

Факторы поражения при ядерном взрыве

Взрыв ядерной бомбы приносит не только ужасные мгновенные разрушения. Последствия данного взрыва ощутят на себе не только люди, попавшие в зону поражения, но и их дети, родившиеся после атомного взрыва. Типы поражения атомным оружием подразделяются на следующие группы:

  • Световое излучение, которое происходит непосредственно при взрыве;
  • Ударная волна, распространяемая бомбой сразу после взрыва;
  • Электромагнитный импульс;
  • Проникающая радиация;
  • Радиоактивное заражение, которое может сохраниться на десятки лет.

Хотя на первый взгляд, световая вспышка несет меньше всего угрозы, на самом деле она образуется в результате высвобождения огромного количества тепловой и световой энергии. Её мощность и сила намного превосходит мощность лучей солнца, поэтому поражение светом и теплом может стать фатальным на расстоянии нескольких километров.

Радиация, которая выделяется при взрыве, тоже очень опасна. Хотя она действует недолго, но успевает заразить всё вокруг, так как её проникающая способность невероятно велика.

Ударная волна при атомном взрыве действует подобно такой же волне при обычных взрывах, только её мощность и радиус поражения намного больше. За несколько секунд она наносит непоправимые повреждения не только людям, но и технике, зданиям и окружающей природе.

Проникающая радиация провоцирует развитие лучевой болезни, а электромагнитный импульс представляет опасность только для техники. Совокупность всех этих факторов, плюс мощность взрыва, делают атомную бомбу самым опасным оружием в мире.

Первые в мире испытания ядерного оружия

Первой страной, разработавшей и испытавшей ядерное оружие, оказались Соединённые Штаты Америки. Именно правительство США выделило огромные денежные дотации на разработку нового перспективного оружия. К концу 1941 года в США были приглашены многие выдающиеся учёные в сфере атомных разработок, которые уже к 1945 году смогли представить опытный образец атомной бомбы, пригодный для испытаний.

Первые в мире испытания атомной бомбы, оснащенной взрывным устройством, были проведены в пустыне на территории штата Нью-Мексико. Бомба под названием «Gadget» была взорвана 16 июля 1945 года. Результат испытаний оказался положительным, хотя военные требовали испытать ядерную бомбу в реальных боевых условиях.

Увидев, что до победы на гитлеровской коалицией остался всего один шаг, и больше такой возможности может не представиться, Пентагон решил нанести ядерный удар по последнему союзнику гитлеровской Германии – Японии. Кроме того, использование ядерной бомбы должно было решить сразу несколько проблем:

  • Избежать ненужного кровопролития, которое неизбежно бы случилось, если бы войска США ступили на территорию императорской Японии;
  • Одним ударом поставить на колени неуступчивых японцев, заставив их пойти на условия, выгодные США;
  • Показать СССР (как возможному сопернику в будущем), что армия США обладает уникальным оружием, способным стереть с лица земли любой город;
  • И, конечно же, на практике убедиться, на что способно ядерное оружие в реальных боевых условиях.

6 августа 1945 года на японский город Хиросима была сброшена первая в мире атомная бомба, которая применялась в военных действиях. Эту бомбу назвали «Малыш», так как её вес составлял 4 тонны. Сброс бомбы был тщательно спланирован, и она попала именно туда, куда и планировалось. Те дома, которые не были разрушены взрывной волной, сгорели, так как упавшие в домах печки спровоцировали пожары, и весь город был объят пламенем.

После яркой вспышки последовала тепловая волна, которая сожгла всё живое в радиусе 4 километров, а последовавшая за ней ударная волна разрушила большую часть зданий.

Те, кто попал под тепловой удар в радиусе 800 метров, были сожжены заживо. Взрывной волной у многих сорвало обгоревшую кожу. Через пару минут прошёл странный чёрный дождь, который состоял из пара и пепла. У тех, кто попал под чёрный дождь, кожа получила неизлечимые ожоги.

Те немногие, которым посчастливилось уцелеть, заболели лучевой болезнью, которая в то время была не только не изучена, но и полностью неизвестна. У людей началась лихорадка, рвота, тошнота и приступы слабости.

9 августа 1945 года на город Нагасаки была сброшена вторая американская бомба, которая называлась «Толстяк». Данная бомба имела примерно такую же мощность, как и первая, а последствия её взрыва были столь же разрушительные, хотя людей погибло в два раза меньше.

Две атомные бомбы, сброшенные на японские города, оказались первым и единственным в мире случаями применения атомного оружия. Более 300 000 человек погибли в первые дни после бомбардировки. Ещё около 150 тысяч погибли от лучевой болезни.

После ядерной бомбардировки японских городов, Сталин получил настоящий шок. Ему стало ясно, что вопрос разработки ядерного оружия в советской России – это вопрос безопасности всей страны. Уже 20 августа 1945 года начал работать специальный комитет по вопросам атомной энергии, который был в срочном порядке создан И. Сталиным.

Хотя исследования по ядерной физике проводились группой энтузиастов ещё в царской России, в советское время ей не уделяли должного внимания. В 1938 году все исследования в этой области были полностью прекращены, а многие учёные-ядерщики репрессированы, как враги народа. После ядерных взрывов в Японии советская власть резко начала восстанавливать ядерную отрасль в стране.

Имеются данные, что разработка ядерного оружия велась в гитлеровской Германии, и именно немецкие учёные доработали «сырую» американскую атомную бомбу, поэтому правительство США вывезло из Германии всех специалистов-атомщиков и все документы, связанные с разработкой ядерного оружия.

Советская разведывательная школа, которая за время войны смогла обойти все зарубежные разведки, ещё в 1943 году передавала в СССР секретные документы, связанные с разработкой ядерного оружия. В то же время были внедрены советские агенты во все серьёзные американские центры ядерных исследований.

В результате всех этих мер, уже в 1946 году было готово техническое задание по изготовлению двух ядерных бомб советского производства:

  • РДС-1 (с плутониевым зарядом);
  • РДС-2 (с двумя частями уранового заряда).

Аббревиатура «РДС» расшифровывалась как «Россия делает сама», что практически полностью соответствовало действительности.

Новости о том, что СССР готов выпустить своё ядерное оружие, заставило правительство США пойти на радикальные меры. В 1949 году был разработан план «Троян», согласно которому на 70 крупнейших городов СССР планировалось сбросить атомные бомбы. Лишь опасения ответного удара помешали этому плану осуществиться.

Данные тревожные сведения, поступающие от советских разведчиков, заставили учёных работать в авральном режиме. Уже в августе 1949 года состоялись испытания первой атомной бомбы, произведённой в СССР. Когда США узнала про эти испытания, план «Троян» был отложен на неопределённое время. Началась эпоха противостояния двух сверх держав, известная в истории как «Холодная война».

Самая мощная ядерная бомба в мире, известная под именем «Царь-бомбы» принадлежит именно периоду «Холодной войны». Учёные СССР создали самую мощную бомбу в истории человечества. Её мощность составляла 60 мегатонн, хотя планировалось создать бомбу в 100 килотонн мощности. Испытания данной бомбы прошли в октябре 1961 года. Диаметр огненного шара при взрыве составил 10 километров, а взрывная волна облетела земной шар три раза. Именно это испытание заставило большинство стран мира подписать договор о прекращении ядерных испытаний не только в атмосфере земли, но даже в космосе.

Хотя атомное оружие является превосходным средством устрашения агрессивных стран, с другой стороны оно способно гасить любые военные конфликты в зародыше, так как при атомном взрыве могут быть уничтожены все стороны конфликта.

В поисках идеального оружия, способного одним щелчком испарить армию противника, бились сотни тысяч известных и забытых оружейников древности. Периодически след этих поисков можно найти в сказках, более или менее правдоподобно описывающих чудо-меч или лук, бьющий без промаха.

К счастью, технический прогресс двигался долгое время настолько медленно, что реальное воплощение сокрушительного оружия оставалась в мечтах и устных рассказах, а позже на страницах книг. Научно-технический скачок XIX века обеспечил условия для создания главной фобии века ХХ-го. Ядерная бомба, созданная и испытанная в реальных условиях, произвела революцию и в военном деле, и в политике.

История создания оружия

Долгое время считалось, что самое мощное оружие можно создать только с использованием взрывчатых веществ. Открытия ученых, работавших с самыми мелкими частицами, дали научное обоснование того, что с помощью элементарных частиц можно вырабатывать огромную энергию. Первым в ряду исследователей можно назвать Беккереля, в 1896 году открывшего радиоактивность солей урана.

Сам уран был известен еще с 1786 года, однако в то время о его радиоактивности никто не подозревал. Работа ученых на рубеже XIX и ХХ веков выявила не только особые физические свойства, но и возможность получения энергии из радиоактивных веществ.

Вариант изготовления оружия на основе урана впервые был подробно описан, опубликован и запатентован французскими физиками, супругами Жолио-Кюри в 1939 году.

Несмотря на ценность для оружейного дела, сами ученые были решительно против создания настолько сокрушительного оружия.

Пройдя Вторую мировую войну в Сопротивлении, в 1950-х супруги (Фредерик и Ирэн) понимая разрушительную силу войны, выступают за всеобщее разоружение. Их поддерживают Нильс Бор, Альберт Эйнштейн и другие видные физики того времени.

Между тем, пока Жолио-Кюри были заняты проблемой фашистов в Париже, на другом конце планеты, в Америке, разрабатывался первый в мире ядерный заряд. Роберту Оппенгеймеру, возглавившему работы, были предоставлены широчайшие полномочия и огромные ресурсы. Конец 1941 года ознаменовался началом проекта «Манхеттен», приведшего в итоге к созданию первого боевого ядерного заряда.


В городке Лос-Аламос, штат Нью-Мексико, были воздвигнуты первые производственные площади для получения оружейного урана. В дальнейшем такие же ядерные центры появляются по всей стране, например в Чикаго, в Ок-Ридже, штат Теннеси, производились исследования и в Калифорнии. На создание бомбы были брошены лучшие силы профессуры американских университетов, а так же бежавшие из Германии ученые-физики.

В самом же «Третьем Рейхе» работа по созданию нового типа оружия была развернута характерным для фюрера способом.

Поскольку «Бесноватого» больше интересовали танки и самолеты, и чем больше тем лучше, в новой чудо-бомбе он не видел особой нужды.

Соответственно не поддерживаемые Гитлером проекты в лучшем случае двигались черепашьим шагом.

Когда же стало припекать, и оказалось что танки и самолеты проглотил Восточный фронт, новое чудо оружие получило поддержку. Но было поздно, в условиях бомбежек и постоянного страха советских танковых клиньев создать устройство с ядерной составляющей не представлялось возможным.

Советский Союз более внимательно относился к возможности создания нового типа разрушительного оружия. В довоенный период физиками собирались и сводились общие знания о ядерной энергетике и возможности создания ядерного оружия. Усиленно работала разведка в течение всего периода создания ядерной бомбы как в СССР, так и в США. Значительную роль в сдерживании темпов разработки сыграла война, так как огромные ресурсы уходили на фронт.

Правда, академик Курчатов Игорь Васильевич, со свойственным упорством, продвигал работу всех подведомственных подразделений и в этом направлении. Забегая немного вперед, именно ему будет поручено ускорить разработки оружия перед лицом угрозы американского удара по городам СССР. Именно ему, стоявшему во граве громадной машины из сотен и тысяч ученых и работников будет присвоено почетное звание отца советской ядерной бомбы.

Первые в мире испытания

Но вернемся к американской ядерной программе. К лету 1945 года американским ученым удалось создать первую в мире ядерную бомбу. Любой мальчишка, сделавший сам или купивший в магазине мощную петарду, испытывает необычайные муки, желая взорвать ее поскорее. В 1945 году сотни американских военных и ученых испытывали то же самое.

16 июня 1945 года в пустыне Аламогордо, штат Нью-Мексико, были произведены первые в истории испытания ядерного оружия и один из самых мощных, на тот момент, взрывов.

Очевидцев, наблюдавших за подрывом из бункера, поразила сила, с которой заряд разорвался на вершине 30-метровой стальной башни. Сначала все залил свет, сильнее в несколько раз сильнее солнечного. Затем в небо поднялся огненный шар, превратившийся в столб дыма, оформившегося в знаменитый гриб.

На место подрыва, как только улеглась пыль, ринулись исследователи и создатели бомбы. Наблюдали они за последствиями из обвешанных свинцом танков «Шерман». Увиденное поразило их, ни одно оружие не наносило бы такого ущерба. Песок местами оплавился до стекла.


Найдены были и крошечные останки башни, в воронке огромного диаметра изуродованные и раздробленные конструкции наглядно иллюстрировали разрушительную мощь.

Поражающие факторы

Этот подрыв дал первые сведения о силе нового оружия, о том, с помощью чего он может уничтожить противника. Это несколько факторов:

  • световое излучение, вспышка, способная ослепить даже защищенные органы зрения;
  • ударная волна, плотный поток воздуха, движущийся от центра, уничтожающий большинство строений;
  • электромагнитный импульс, выводящий из строя большую часть техники и не позволяющий пользоваться средствами связи первое время после взрыва;
  • проникающая радиация, наиболее опасный фактор для укрывшихся от прочих поражающих факторов, делится на альфа- бета- гамма- облучение;
  • радиоактивное заражение, способное отрицательно влиять на здоровье и жизнь в течение десятков, а то и сотен лет.

Дальнейшее применение ядерного оружия, в том числе в боевых действиях, показала все особенности влияния на живые организмы и на природу. 6 августа 1945 года стал последним днем для десятков тысяч жителей небольшого города Хиросима, известного тогда несколькими важными военными объектами.

Исход войны на Тихом океане был предрешен, однако в Пентагоне посчитали, что операция на японском архипелаге будет стоить более миллиона жизней морских пехотинцев армии США. Было принято решение убить сразу несколько зайцев, вывести Японию из войны, сэкономив на десантной операции, испытать в деле новое оружие и заявить о нем всему миру, и, прежде всего, СССР.

В час ночи самолет, на борту которого располагалась ядерная бомба «Малыш», вылетел на задание.

Бомба, сброшенная над городом, разорвалась на высоте примерно 600 метров в 8.15 утра. Все здания, располагавшиеся на расстоянии 800 метров от эпицентра, были разрушены. Уцелели стены всего нескольких строений, рассчитанных на 9-ти балльное землетрясение.

Из каждых десяти человек, находившихся в момент разрыва бомбы в радиусе 600 метров выжить смог только один. Световое излучение превращало людей в уголь, оставляя на камне следы тени, темный отпечаток места, на котором находился человек. Последовавшая взрывная волна была настолько сильна, что смогла выбить стекла на расстоянии 19 километров от места взрыва.


Одного подростка плотный поток воздуха выбил из дома через окно, приземлившись, парень увидел, как стены дома складываются как карты. За взрывной волной последовал огненный смерч, уничтоживший тех немногих жителей, уцелевших после взрыва и не успевших покинуть зону пожаров. Находившиеся на удалении от взрыва начали испытывать сильное недомогание, причина которой была первоначально неясна врачам.

Много позже, через несколько недель был озвучен термин «радиационное отравление», известный ныне как лучевая болезнь.

Жертвами всего одной бомбы, как непосредственно от взрыва, так и от последовавших болезней, стали более 280 тысяч человек.

На этом бомбардировки Японии ядерным оружием не закончились. По плану удару должны были быть подвергнуты всего от четырех до шести городов, но погодные условия позволили ударить еще только по Нагасаки. В этом городе жертвами бомбы «Толстяк» стали более 150 тысяч человек.


Обещания американского правительства наносить такие удары до капитуляции Японии привели к перемирию, а затем и к подписанию соглашения, окончившего Мировую войну. Но для ядерного оружия это было только начало.

Самая мощная бомба в мире

Послевоенное время ознаменовалось противостоянием блока СССР и союзников с США и НАТО. В 1940-х американцы всерьез рассматривали возможность нанесения удара по Советскому Союзу. Для сдерживания бывшего союзника пришлось ускорить работы по созданию бомбы, и уже в 1949 году, 29 августа с монополией Штатов в ядерном оружии было покончено. Во время гонки вооружений наибольшее внимание заслуживают два испытания ядерных зарядов.

Атолл Бикини, известный, прежде всего, легкомысленными купальниками, в 1954 году в буквальном смысле прогремел на весь мир в связи с испытаниями ядерного заряда особой мощности.

Американцы, решив опробовать новую конструкцию атомного оружия, не рассчитали заряд. В итоге взрыв получился в 2,5 раза мощнее, чем планировалось. Под ударом оказались жители близлежащих островков, а так же вездесущие японские рыбаки.


Но это была не самая мощная американская бомба. В 1960 году на вооружение принимается ядерная бомба В41, так и не прошедшая полноценных испытаний из-за своей мощности. Силу заряда рассчитали теоретически, опасаясь взрывать на полигоне такое опасное оружие.

Советский Союз, любивший во всем быть первым, испытал в 1961 году , прозванную по иному «Кузькина мать».

Отвечая на ядерный шантаж Америки, советские ученые создали самую мощную бомбу в мире. Испытанная на Новой Земле, она оставила свой след почти во всех уголках земного шара. По воспоминаниям, в самых удаленных уголках в момент взрыва ощущалось легкое землетрясение.


Взрывная волна, само собой, потеряв всю разрушительную силу, смогла обогнуть Землю. На сегодняшний момент это самая мощная ядерная бомба в мире, созданная и испытанная человечеством. Конечно, будь развязаны руки, ядерная бомба Ким Чен Ына была бы мощнее, но у него нет Новой Земли что бы испытать ее.

Устройство атомной бомбы

Рассмотрим очень примитивное, чисто для понимания, устройство атомной бомбы. Классов атомных бомб много, но рассмотрим три основные:

  • урановая, на основе урана 235 впервые взорванная над Хиросимой;
  • плутониевая, на основе плутония 239 впервые взорванная над Нагасаки;
  • термоядерная, иногда называемая водородной, на основе тяжелой воды с дейтерием и тритием, к счастью, против населения не применявшаяся.

Первые две бомбы основаны на эффекте деления тяжелых ядер на более мелкие путем неконтролируемой ядерной реакции с выделением огромного количества энергии. Третья основана на слиянии ядер водорода (вернее его изотопов дейтерия и трития) с образованием более тяжелого, по отношению к водороду, гелия. При одинаковом весе бомбы разрушительный потенциал водородной в 20 раз больше.


Если для урана и плутония достаточно собрать воедино массу большую чем критическая (при которой начинается цепная реакция), то для водородной этого недостаточно.

Для надежного соединения нескольких кусков урана в один используется эффект пушки при котором более мелкие куски урана выстреливаются в более крупные. Можно применять и порох, но для надежности применяется маломощная взрывчатка.

В плутониевой бомбе для создания необходимых условий цепной реакции взрывчатку располагают вокруг слитков с плутонием. За счет кумулятивного эффекта, а также расположенного в самом центре инициатора нейтронов (бериллий с несколькими миллиграммами полония) необходимые условия достигаются.

Она имеет основной заряд, который сам по себе никак взорваться не может, и взрыватель. Для создания условий слияния ядер дейтерия и трития, нужны невообразимые для нас давления и температуры хотя бы в одной точке. Далее произойдет цепная реакция.

Для создания таких параметров в состав бомбы входит обычный, но маломощный, ядерный заряд, который и является взрывателем. Его подрыв создает условия для начала термоядерной реакции.

Для оценки мощности атомной бомбы применяют так называемый «тротиловый эквивалент». Взрыв это выделение энергии, самое известное в мире взрывчатое вещество – тротил (ТНТ – тринитротолуол), к нему и приравнивают все новые виды взрывчатки. Бомба «Малыш» – 13 килотонн ТНТ. То есть эквивалентна 13000 .


Бомба «Толстяк» – 21 килотонна, «Царь-бомба» – 58 мегатонн ТНТ. Страшно подумать 58 миллионов тонн взрывчатки сосредоточенной в массе 26,5 тонн, именно столько весела эта бомба.

Опасность ядерной войны и катастрофы, связанные с атомом

Появившись в разгар самой страшной войны ХХ века, ядерное оружие стало самой большой опасностью для человечества. Сразу после Второй Мировой началась война Холодная, несколько раз едва не переросшая в полноценный ядерный конфликт. Об угрозе применения хотя бы одной стороной ядерных бомб и ракет стали говорить еще в 1950-х годах.

Все понимали и понимают, в этой войне победителей быть не может.

Для сдерживания предпринимались и предпринимаются усилия многих ученых и политиков. Чикагский университет, используя мнение приглашенных ядерщиков, в том числе Нобелевских лауреатов, ставит часы Судного Дня за несколько минут до полуночи. Полночь обозначает ядерный катаклизм, начало новой Мировой войны и уничтожение прежнего мира. В разные годы стрелки часов колебались от 17 до 2 минут до полуночи.


Известны и несколько крупных аварий, произошедших на атомных станциях. К оружию эти катастрофы отношение имеют опосредованное, АЭС все же отличаются от ядерных бомб, но они как нельзя лучше показывают результаты использования атома в военных целях. Самые крупные из них:

  • 1957 год, Кыштымская авария, из-за сбоя в системе хранения произошел взрыв недалеко от Кыштыма;
  • 1957 год, Британия, на северо-западе Англии не досмотрели за безопасностью;
  • 1979 год, США, из-за несвоевременно обнаруженной утечки произошел взрыв и выброс из АЭС;
  • 1986 год, трагедия в Чернобыле, взрыв 4-го энергоблока;
  • 2011 год, авария на станции Фукусима, Япония.

Каждая из этих трагедий легла тяжелой печатью на судьбы сотен тысяч людей и превратила целые области в нежилые зоны с особым контролем.


Были инциденты, едва не стоившие начала атомной катастрофы. Советские атомные подводные лодки неоднократно имели на борту аварии, связанные с реакторами. Американцы уронили бомбардировщик «Суперкрепость» с двумя ядерными бомбами Мark 39 на борту, мощностью 3,8 мегатонн. Но сработавшая “система безопасности” не позволила зарядам сдетонировать и катастрофы удалось избежать.

Ядерное оружие в прошлом и настоящем

Сегодня любому ясно, что ядерная война уничтожит современное человечество. Между тем желание обладать ядерным оружием и войти в ядерный клуб, а точнее ввалиться в него, вышибив дверь, по-прежнему будоражит умы некоторых лидеров государств.

Самовольно создали ядерное оружие Индия и Пакистан, скрывают наличие бомбы израильтяне.

Для одних обладания ядерной бомбой – способ доказать важность на международной арене. Для других – гарантия невмешательства крылатой демократии или иных факторов извне. Но главное, чтобы эти запасы не пошли в дело, для чего они действительно были созданы.

Видео

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео

Атомная бомба - снаряд для получения взрыва большой силы в результате весьма быстрого выделения ядерной (атомной) энергии.

Принцип действия атомных бомб

Ядерный заряд разделён на несколько частей до критических размеров, чтобы в каждой из них не могла начаться саморазвивающаяся неуправляемая цепная реакция делений атомов делящегося вещества. Такая реакция возникнет лишь тогда, когда все части заряда будут быстро соединены в одно целое. От скорости сближения отдельных частей в сильной степени зависит полнота протекания реакции и в конечном счёте мощность взрыва. Для сообщения большой скорости частям заряда можно использовать взрыв обычного взрывчатого вещества. Если части ядерного заряда расположить по радиальным направлениям на некотором расстоянии от центра, а с внешней стороны поместить заряды тротила, то можно осуществить взрыв обычных зарядов, направленный к центру ядерного заряда. Все части ядерного заряда не только с огромной скоростью соединяться в единое целое, но и окажутся на некоторое время сжатыми со всех сторон огромным давлением продуктов взрыва и не смогут разделиться сразу, как только начнётся в заряде цепная ядерная реакция. В результате этого произойдёт значительно большее деление, чем без такого сжатия, и, следовательно, повысится мощность взрыва. Увеличению мощности взрыва при том же количестве делящегося вещества способствует также отражатель нейтронов (наиболее эффективными отражателями являются бериллий < Be >, графит, тяжёлая вода < H3O >). Для первого деления, которое положило бы начало цепной реакции, нужен, по меньшей мере, один нейтрон. Рассчитывать на своевременное начало цепной реакции под действием нейтронов, появляющихся при самопроизвольном (спонтанном) делении ядер, нельзя, т.к. оно происходит сравнительно редко: для U-235 - 1 распад в час на 1 гр. вещества. Нейтронов, существующих в свободном виде в атмосфере, также очень мало: через S = 1см/кв. за секунду пролетает в среднем около 6 нейтронов. По этой причине в ядерном заряде применяют искусственный источник нейтронов - своеобразный ядерный капсюль-детонатор. Он обеспечивает также множество начинающихся одновременно делений, поэтому реакция протекает в виде ядерного взрыва.

Варианты детонации (Пушечная и имплозивная схемы)

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой -- неподвижный («мишень»). Блоки рассчитаны так, что при соединении их общая масса становится надкритической.

Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет на два порядка более высокий нейтронный фон, что резко повышает вероятность преждевременного развития цепной реакции до соединения блоков. Это приводит к неполному выходу энергии (т. н. «шипучка», англ. Для реализации пушечной схемы в плутониевых боеприпасах требуется увеличение скорости соединения частей заряда до технически недостижимого уровня. Кроме того, уран лучше, чем плутоний, выдерживает механические перегрузки.

Имплозивная схема. Эта схема детонации подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток -- ТАТВ (Триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками)